Skip to main content

Advertisement

Log in

Characterisation and categorisation of the diversity in viscoelastic vibrational properties between 98 wood types

  • Original Paper
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

Context

Increased knowledge on diversity in wood properties would have implications both for fundamental research and for promoting a diversification of uses as material.

Aims

The objective is to contribute to overcoming the critical lack of data on the diversity of wood dynamic mechanical/viscoelastic vibrational properties by testing lesser known species and categorising sources of variability.

Methods

Air-dry axial specific dynamic modulus of elasticity (E′/γ) and damping coefficient (tanδ) were measured on a wide sampling (1,792 specimens) of 98 wood types from 79 species. An experimental device and protocol was designed for conducting systematic (i.e. rapid and reproducible) characterisations.

Results

Diversity at the specimens’ level corroborates the “standard” relationship between tanδ and E′/γ, which is discussed in terms of orientation of wood elements and of chemical composition. Diversity at the species level is expressed on the basis of results for normal heartwood, with specific gravity (γ) ranging from 0.2 to 1.3. Axial E′/γ ranges from 9 to 32 GPa and tanδ from 4 × 10−3 to 19 × 10−3. Properties distribution follows a continuum, but with group characteristics. The lowest values of tanδ are only found in certain tropical hardwoods. Results can also suggest alternative species for musical instruments making.

Conclusion

The variations in specific gravity, in stiffness or in “viscosity” appear to be predominantly linked to different levels of diversity: between species or between wood types (reaction wood or taxonomy-related differences in heartwood extractives).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bordonné PA (1989) Module dynamique et frottement intérieur dans le bois. Mesures sur poutres flottantes en vibrations naturelles. PhD, Institut National Polytechnique de Lorraine, Nancy

  • Brancheriau L, Baillères H (2002) Natural vibration analysis of clear wooden beams: a theoretical review. Wood Sci Technol 36:347–365

    Article  CAS  Google Scholar 

  • Brancheriau L, Kouchade C, Brémaud I (2010) Internal friction measurement of tropical species by various acoustic methods. J Wood Sci 56:371–379

    Article  Google Scholar 

  • Brémaud I (2006) Diversité des bois utilisés ou utilisables en facture d’instruments de musique. Doctorat, Université Montpellier II

  • Brémaud I (2012) Acoustical properties of wood in string instruments soundboards and tuned idiophones: biological and cultural diversity. J Acoust Soc Am 131. doi:10.1121/1.3651233

  • Brémaud I, Poidevin N (2009) Approches culturelles et mécaniques dans le choix des bois en facture: cas des archets anciens. In: 5th Conference on Interdisciplinary Musicology, CIM09, 26–29 Octobre 2009, Paris, France

  • Brémaud I, Minato K, Thibaut B (2009) Mechanical damping of wood as related to species classification: a preliminary survey. In: Thibaut B (ed) 6th Plant Biomechanics Conference PBM09, 16–21 November 2009, Cayenne, French Guyana. pp 536–542

  • Brémaud I, Cabrolier P, Gril J, Clair B, Gérard J, Minato K, Thibaut B (2010a) Identification of anisotropic vibrational properties of Padauk wood with interlocked grain. Wood Sci Technol 44:355–367

    Article  Google Scholar 

  • Brémaud I, Minato K, Langbour P, Thibaut B (2010b) Physico-chemical indicators of the inter-specific variability in vibration damping of wood. Ann For Sci 67:707

    Article  Google Scholar 

  • Brémaud I, Amusant N, Minato K, Gril J, Thibaut B (2011a) Effect of extractives on vibrational properties of African Padauk (Pterocarpus soyauxii Taub.). Wood Sci Technol 45:461–472

    Article  Google Scholar 

  • Brémaud I, Gril J, Thibaut B (2011b) Anisotropy of wood vibrational properties: dependence on grain angle and review of literature data. Wood Sci Technol 45:735–754

    Article  Google Scholar 

  • Brémaud I, Ruelle J, Thibaut A, Thibaut B (2011c) Changes in viscoelastic vibrational properties between compression and normal wood: roles of microfibril angle and of lignin. Holzforschung (submitted)

  • Bucur V (2006) Acoustics of wood. Springer, Berlin

    Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    Article  PubMed  Google Scholar 

  • David B (1999) Caractérisations acoustiques de structures vibrantes par mise en atmosphère raréfiée. PhD, Université Paris 6

  • Détienne P, Chanson B (1996) L’éventail de la densité du bois des feuillus. Comparaison entre différentes régions du Monde. Bois For Trop 250:19–30

    Google Scholar 

  • Dlouhá J (2009) Comportement viscoélastique longitudinal du bois vert: diversité et prédiction à long terme. Doctorat, Université Montpellier II

  • Dlouhá J, Alméras T, Clair B (2011) Representativeness of wood biomechanical properties measured after storage in different conditions. Trees. doi:10.1007/s00468-011-0636-9

  • Fukada E (1950) The vibrational properties of wood I. J Phys Soc Jpn 5:321–327

    Article  Google Scholar 

  • Hernandez RE (2007) Moisture sorption properties of hardwoods as affected by their extraneous substances, wood density, and interlocked grain. Wood Fiber Sci 39:132–145

    CAS  Google Scholar 

  • Holz D (1996) Tropical hardwoods used in musical instruments—can we substitute them by temperate zone species? Holzforschung 50:121–129

    Article  CAS  Google Scholar 

  • Jones DIG (2001) Handbook of viscoelastic vibration damping. Wiley, Chichester

    Google Scholar 

  • Kataoka A, Ono T (1975) The relations of experimental factors to the vibration and the measuring values of dynamic mechanical properties of wood. I. The experimental errors due to the measuring apparatus (in Japanese). Mokuzai Gakkaishi 21:543–550

    Google Scholar 

  • Kitahara R, Matsumoto T (1973) Mechanism of damping in wood (in Japanese). Mokuzai Gakkaishi 19:373–378

    Google Scholar 

  • Kubojima Y, Ohtani T, Yoshihara H (2004) Effect of shear deflection on vibrational properties of compressed wood. Wood Sci Technol 38:237–244

    Article  CAS  Google Scholar 

  • Kubojima Y, Tonosaki M, Yoshihara H (2005) Effect of additional mass on the Young’s modulus of a wooden beam. J Test Eval 33:278–282

    Google Scholar 

  • Matsunaga M, Sugiyama M, Minato K, Norimoto M (1996) Physical and mechanical properties required for violin bow materials. Holzforschung 50:511–517

    Article  CAS  Google Scholar 

  • Minato K, Sakai K, Matsunaga M, Nakatsubo F (1997) The vibrational properties of wood impregnated with extractives of some species of Leguminosae. Mokuzai Gakkaishi 43:1035–1037

    CAS  Google Scholar 

  • Minato K, Konaka Y, Brémaud I, Suzuki S, Obataya E (2010) Extractives of muirapiranga (Brosimun sp.) and its effects on the vibrational properties of wood. J Wood Sci 56:41–46

    Article  CAS  Google Scholar 

  • Nakao T, Okano T, Asano I (1985) Theoretical and experimental analysis of flexural vibration of the viscoelastic Timoshenko beam. J Appl Mech 52:728–731

    Article  Google Scholar 

  • Obataya E, Norimoto M (1995) Acoustic properties of cane (Arundo donax L.) used for reeds of woodwind instruments I. The relationships between vibrational properties and moisture content of cane (in Japanese). Mokuzai Gakkaishi 41:289–292

    Google Scholar 

  • Obataya E, Norimoto M, Gril J (1998) The effects of adsorbed water on dynamic mechanical properties of wood. Polymer 39:3059–3064

    Article  CAS  Google Scholar 

  • Obataya E, Umezawa T, Nakatsubo F, Norimoto M (1999) The effects of water-soluble extractives on the acoustic properties of reed (Arundo donax L.). Holzforschung 53:63–67

    Article  CAS  Google Scholar 

  • Obataya E, Ono T, Norimoto M (2000) Vibrational properties of wood along the grain. J Mater Sci 35:2993–3001

    Article  CAS  Google Scholar 

  • Obataya E, Minato K, Tomita B (2001) Influence of moisture content on the vibrational properties of hematoxylin-impregnated wood. J Wood Sci 47:317–321

    Article  CAS  Google Scholar 

  • Olsson AM, Salmén L (1992) Viscoelasticity of in situ lignin as affected by structure. Softwood vs. hardwood. In: ACS Symposium Series No 489, Viscoelasticity of Biomaterials. American Chemical Society, pp 133–143

  • Olsson A-M, Salmén L (1997) The effect of lignin composition on the viscoelastic properties of wood. Nord Pulp Pap Res J 3:140–144

    Article  Google Scholar 

  • Ono T, Kataoka A (1979) The frequency dependence of the dynamic Young’s modulus and internal friction of wood used for the soundboard of musical Instruments II (in Japanese). Mokuzai Gakkaishi 25:535–542

    Google Scholar 

  • Ono T, Norimoto M (1983) Study on Young’s modulus and internal friction of wood in relation to the evaluation of wood for musical instruments. Jpn J Appl Phys 22:611–614

    Article  Google Scholar 

  • Ono T, Norimoto M (1984) On physical criteria for the selection of wood for soundboards of musical instruments. Rheol Acta 23:652–656

    Article  Google Scholar 

  • Sakai K, Matsunaga M, Minato K, Nakatsubo F (1999) Effects of impregnation of simple phenolics and natural polycyclic compounds on physical properties of wood. J Wood Sci 45:227–232

    Article  CAS  Google Scholar 

  • Sali S, Kopac J (1998) The influence of the different machining processes on the acoustic properties of wooden resonant boards. Catgut Acoust Soc J (II) 3:15–20

    Google Scholar 

  • Sasaki T, Norimoto M, Yamada T, Rowell RM (1988) Effect of moisture on the acoustical properties of wood (in Japanese). Mokuzai Gakkaishi 34:794–803

    Google Scholar 

  • Traoré B, Brancheriau L, Perré P, Stevanovic T, Diouf P (2010) Acoustic quality of vène wood (Pterocarpus erinaceus Poir.) for xylophone instrument manufacture in Mali. Ann For Sci 67:815

    Article  Google Scholar 

  • Wegst UGK (2006) Wood for sound. Am J Bot 93:1439–1448

    Article  PubMed  Google Scholar 

  • Williamson BG, Wiemann MC (2010) Measuring wood specific gravity… Correctly. Am J Bot 97:519–524

    Article  PubMed  Google Scholar 

  • Yano H (1994) The changes in the acoustic properties of Western red cedar due to methanol extraction. Holzforschung 48:491–495

    Article  CAS  Google Scholar 

  • Yano H, Kyou K, Furuta Y, Kajita H (1995) Acoustic properties of Brazilian rosewood used for guitar back plate (in Japanese). Mokuzai Gakkaishi 41:17–24

    Google Scholar 

Download references

Acknowledgements

Authors thank P. Cabrolier and J. Dlouhá for conducting some tests; P. Détienne (CIRAD xylarium) for wood identification; C. Daigremont and S. Lotte (CIRAD workshop) and instrument makers, for providing wood material; and N. Poidevin for testing “new” woods for violin bows.

Funding

This work has been supported by CNRS and CIRAD in France and by JSPS in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Brémaud.

Additional information

Handling Editor: Barry Alan Gardiner

Contribution of co-authors

I.B. designed and performed research and wrote the paper; Y.E.K. realized test device II and control/processing software; D.G. did physical tests; K.M. initiated the methodology; K.M., B.T. and J.G. supervised the work and edited the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brémaud, I., El Kaïm, Y., Guibal, D. et al. Characterisation and categorisation of the diversity in viscoelastic vibrational properties between 98 wood types. Annals of Forest Science 69, 373–386 (2012). https://doi.org/10.1007/s13595-011-0166-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13595-011-0166-z

Keywords

Navigation