Skip to main content
Log in

Effects of dietary crude protein levels on development, antioxidant status, and total midgut protease activity of honey bee (Apis mellifera ligustica)

  • Original article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

The effects of different levels of dietary crude protein on the development, antioxidant enzymatic activity, and total midgut protease activity of honey bees were investigated in the study. A total of 30 colonies of bees with sister queens were used in the test. Dietary treatments were pure rape pollen (Control) and pollen substitutes (PS) with crude protein (CP) levels at 15%, 20%, 25%, 30%, and 35% (designated as PS15, PS20, PS25, PS30, and PS35), respectively. We compared the effects of these diets on honey bees by measuring diet consumption, bee development (egg hatch, pupation success, and pupal weight), and the protein content of emergent adult bees, their antioxidant status and the activity of their midgut digestive proteases. Bees consumed significantly more (P < 0.001) natural pollen than any PS, and bees fed PS had similar diet consumption over the entire experimental period. However, the total protein intake was varied (P < 0.05). PS with a protein level about 30% was recognized as excellent quality diet for maximum body weight, highest protein content and antioxidant enzymatic activity, and PS with a protein rate about 35% exerted the greatest effect on increasing percentage of hatch and percentage of pupation. All these results indicate that PS appeared to be a valuable proteinaceous food approximated to the pollen, and 30∼35% of dietary protein level was optimal to maintain the colony development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Ahmad, S., Duval, D.L., Weinhold, L.C., Pardini, R.S. (1991) Cabbage looper antioxidant enzymes: tissue specificity. Insect Biochem. 21, 563–572

    Article  CAS  Google Scholar 

  • Alaux, C., Ducloz, F., Crauser, D., Le Conte, Y. (2010) Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562–565

    Article  PubMed  Google Scholar 

  • Arking, R., Burde, V., Graves, K., Hari, R., Feldman, E., Zeevi, A. (2000) Forward and reverse selection for longevity in Drosophila is characterized by alternation of antioxidant gene expression and oxidative damage patterns. Exp. Gerontol. 35, 167–185

    Article  PubMed  CAS  Google Scholar 

  • Boch, R. (1982) Relative attractiveness of different pollens to honeybees when foraging in a flight room and when fed in the hive. J. Apic. Res. 21, 104–106

    Google Scholar 

  • Burgess, E.P.J., Malone, L.A., Christeller, J.T. (1996) Effects of two proteinase inhibitors on the digestive enzyme. J. Insect Physiol. 42, 823–828

    Article  CAS  Google Scholar 

  • Campbell, F.L. (1929) The detection and estimation of insect chitin; and the relation of "chitinization" to hardness and pigmentation of the cuticula of the American cockroach, P. americana. Ann. Entomol. Soc. Am. 22, 401–440

    CAS  Google Scholar 

  • Chen, S.L. (2001) The apicultural science in china. China Agricultural Press, Beijing

    Google Scholar 

  • Cremonez, T.M., De Jong, D., Bitondi, M.M.G. (1998) Quantification of hemolymph protein as a fast method for testing protein diets for honey bees (Hymenoptera: Apidae). J. Econ. Entomol. 91, 1284–1289

    CAS  Google Scholar 

  • De Jong, D., da Silva, E.J., Kevan, P.G., Atkinson, J.L. (2009) Pollen substitutes increase honey bee haemolymph protein levels as much as or more than does pollen. J. Apic. Res. 48, 34–37

    Article  Google Scholar 

  • DeGrandi-Hoffman, G., Wardell, G., Ahumada-Segura, F., Rinderer, T., Danka, R., Pettis, J. (2008) Comparisons of pollen substitute diets for honey bees: consumption rates by colonies and effects on brood and adult populations. J. Apic. Res. 47, 265–270

    Article  Google Scholar 

  • DeGrandi-Hoffman, G., Chen, Y.P., Huang, E., Huang, M.H. (2010) The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J. Insect Physiol. 56, 1184–1191

    Article  PubMed  CAS  Google Scholar 

  • Dietz, A. (1969) Initiation of pollen consumption and pollen movement through the alimentary canal of newly emerged honeybees. Ann. Entomol. Soc. Am. 62, 43–46

    Google Scholar 

  • Dobson, H.E.M. (1988) Survey of pollen and pollenkitt lipids-chemical cues to flower visitors. Am. J. Bot. 75, 170–182

    Article  CAS  Google Scholar 

  • Doull, K.M. (1973) Relationship between pollen, brood rearing and consumption of pollen supplements by honeybees. Apidologie 4, 285–293

    Article  Google Scholar 

  • Duff, S.R., Furgala, B. (1986) Pollen trapping honey bee colonies in Minnesota: part II: effect on foraging activity, honey production, honey moisture content, and nitrogen content of adult workers. Am. Bee J. 126, 755–758

    Google Scholar 

  • Felton, G.W., Summers, C.B. (1995) Antioxidant systems in insects. Arch. Insect Biochem. Physiol. 29, 187–197

    Article  PubMed  CAS  Google Scholar 

  • Flores, J.M., Gutiérrez, I., Espejo, R. (2005) The role of pollen in chalkbrood disease in Apis mellifera: transmission and predisposing conditions. Mycologia 97, 1171–1176

    Article  PubMed  CAS  Google Scholar 

  • Gilliam, M., Taber, S., Richardson, G. (1983) Hygienic behavior of honey bee in relation to chalkbrood disease. Apidologie 14, 29–39

    Article  Google Scholar 

  • Hagedorn, H.H., Moeller, F.E. (1967) The rate of pollen consumption by newly emerged honeybees. J. Apic. Res. 6, 159–162

    Google Scholar 

  • Haydak, M.H. (1970) Honey bee nutrition. Ann. Rev. Entomol. 15, 143–156

    Article  Google Scholar 

  • Herbert, E.W., Shimanuki, H. (1982) Effect of population density and available diet on the rate of brood rearing by honey bees offered a pollen substitute. Apidologie 13, 21–28

    Article  Google Scholar 

  • Herbert, E.W., Shimanuki, H., Caron, D. (1977) Optimum protein levels required by honey bees (Hymenoptera: Apidae) to initiate and maintain brood rearing. Apidologie 8, 141–146

    Article  CAS  Google Scholar 

  • Hornitzky, M. (2010) Honey bee diseases, Australia and New Zealand Standard Diagnostic Procedure 2003. Available at: www.scahls.org.au/procedures/anzsdp

  • Jay, S.C. (1963) The development of honeybees in their cells. J. Apic. Res. 2, 117–134

    Google Scholar 

  • Jay, S.C. (1964) Starvation studied of larval honey bees. Can. J. Zool. 42, 455–462

    Article  Google Scholar 

  • Joanisse, D.R., Storey, K.B. (1996) Oxidative stress and antioxidants in overwintering larvae of cold-hardy goldenrod gall insects. J. Exp. Biol. 199, 1483–1491

    PubMed  CAS  Google Scholar 

  • Knox, D.A., Shimanuki, H., Herbert, E.W. (1971) Diet and the longevity of adult honey bees. J. Econ. Entomol. 64, 1415–1416

    Google Scholar 

  • Levin, M.D., Haydak, M.H. (1951) Seasonal variation in weight and ovarian development in the worker honeybee. J. Econ. Entomol. 44, 54–57

    Google Scholar 

  • Lowry, O., Rosebrough, N., Farr, A., Randall, R. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 365–275

    Google Scholar 

  • Malone, L.A., Burgess, E.P.J., Christeller, J.T., Gatehouse, H.S. (1998) In vivo responses of honey bee midgut proteases to two protease inhibitors from potato. J. Insect Physiol. 44, 141–147

    Article  PubMed  CAS  Google Scholar 

  • Malone, L.A., Burgess, E.P.J., Stefanovic, D., Gatehouse, H.S. (2000) Effects of four protease inhibitors on the survival of worker bumblebees (Bombus terrestris L.). Apidologie 31, 25–38

    Article  CAS  Google Scholar 

  • Mattila, H.R., Otis, G.W. (2006) Influence of pollen diet in spring on development of honey bee (Hymenoptera: Apidae) colonies. J. Econ. Entomol. 99, 604–613

    Article  PubMed  CAS  Google Scholar 

  • Michiels, C., Raes, M., Toussaint, O., Remacle, J. (1994) Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radical Biol. Med. 17, 235–248

    Article  CAS  Google Scholar 

  • Moritz, B., Crailsheim, K. (1987) Physiology of protein digestion in the midgut of the honeybee (Apis mellifera L.). J. Insect Physiol 33, 923–931

    Article  CAS  Google Scholar 

  • Nguyen, V.N. (1999) Effect of protein nutrition and pollen supplementation of honeybee, Apis mellifera L. colonies on characteristics of drones with particular reference to sexual maturity. Aust. Beekeeper (Mar) 101, 374–376

    Google Scholar 

  • Oyanagui, Y. (1984) Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal. Biochem. 142, 290–296

    Article  PubMed  CAS  Google Scholar 

  • Pernal, S.F., Currie, R.W. (2000) Pollen quality of fresh and 1-year-old single pollen diets for worker honey bees (Apis mellifera L.). Apidologie 31, 387–409

    Article  Google Scholar 

  • Phillips, J.P., Campbell, S.D., Michaud, D., Charbonneau, M., Hilliker, A.J. (1989) Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc. Natl. Acad. Sci. (USA) 86, 2761–2765

    Article  CAS  Google Scholar 

  • Placer, Z.A., Cushman, L.L., Johnson, B.C. (1966) Estimation of production of lipid peroxidation, malindialdehyde in biochemical system. Anal. Biochem. 16, 359–367

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro, M. (1994) Growth in bumble bee larvae: relation between development time, mass, and amount of pollen ingested. Can. J. Zool. 72, 1978–1985

    Article  Google Scholar 

  • Rothenbuhler, W. (1964) Behavior genetics of nest cleaning in honey bees. I. Response of four inbred lines to disease-killed brood. Anim. Behav. 12, 578–583

    Article  Google Scholar 

  • Roulston, T.H., Cane, J.H. (2002) The effect of pollen protein concentration on body size in the sweat bee Lasioglossum zephyrum (Hymenoptera: Apiformes). Evol. Ecol. 16, 49–65

    Article  Google Scholar 

  • SAS Institute. 2003. SAS/STAT User’s Guide: version 9.1th edn

  • Schäfer, M.O., Dietemann, V., Pirk, C.W.W., Neumann, P., Crewe, R.M., Hepburn, H.R., Tautz, J., Crailsheim, K. (2006) Individual versus social pathway to honeybee worker reproduction (Apis mellifera): pollen or jelly as protein source for oogenesis. J. Comp. Physiol. A 192, 761–768

    Article  Google Scholar 

  • Schmickl, T., Crailsheim, K. (2001) Cannibalism and early capping: strategy of honeybee colonies in times of experimental pollen shortages. J. Comp. Physiol. A 187, 541–547

    Article  PubMed  CAS  Google Scholar 

  • Schmickl, T., Blaschon, B., Gurmann, B., Crailsheim, K. (2003) Collective and individual nursing investment in the queen and in young and old honeybee larvae during foraging and non-foraging period. Insect Soc. 50, 174–184

    Article  Google Scholar 

  • Schmidt, J.O., Johnson, B.E. (1984) Pollen feeding preference of Apis mellifera, a polylectic bee. Southwest. Entomol. 9, 41–47

    Google Scholar 

  • Schmidt, J.O., Thoenes, S.C., Levin, M.D. (1987) Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann. Entomol. Soc. Am. 80, 176–183

    Google Scholar 

  • Schmidt, L.S., Schmidt, J.O., Hima, R., Wang, W.Y., Xu, L.G. (1995) Feeding preference and survival of young worker honey bees (Hymenoptera: Apidae) fed rape, sesame, and sunflower pollen. J. Econ. Entomol. 88, 1591–1595

    Google Scholar 

  • Somerville, D. (2000) Honey bee nutrition and supplementary feeding, Agnote DAI/178, NSW Agriculture

  • Somerville, D. (2005) Fat bees skinny bees—a manual on honey bee nutrition for beekeepers. Publication no. 05/054. A report for the Rural Industries Research and Development Corporation, Barton

  • Somerville, D.C., Nicol, H.I. (2006) Crude protein and amino acid composition of honey bee-collected pollen pellets from south-east Australia and a note on laboratory disparity. Aust. J. Exp. Agr. 46, 141–149

    Article  CAS  Google Scholar 

  • Spivak, M., Reuter, G.S. (2001) Resistance to American foulbrood diseases by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie 32, 555–565

    Article  Google Scholar 

  • Stanley, R.G., Linskens, H.F. (1974) Pollen: biology, biochemistry, management. Springer, Berlin

    Google Scholar 

  • Sumida, S., Tanaka, K., Kitao, H., Nakadomo, F. (1989) Exercise induced lipid peroxidation and leakage of enzyme before and after vitamin E supplementation. Int. J. Biochem. 21, 835–838

    Article  PubMed  CAS  Google Scholar 

  • Szymaś, B., Jędruszuk, A. (2003) The influence of different diets on haemocytes of adult worker honey bees, Apis mellifera. Apidologie 34, 97–102

    Article  Google Scholar 

  • Wigglesworth, V.B. (1933) The physiology of the cuticle and of ecdysis in Rhodnius prolixus (Triatomidae, Hemiptera); with special reference to the function of the oenocytes and of the dermal glands. Quart. J. Microsc. Sci. 76, 269–318

    Google Scholar 

  • Winston, M.L. (1987) The biology of the honey bee. Harvard University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

We thank staff apiarist G. L. Zhang and students F. Liu, B. L. Zheng, Z. Jiao, G. Y. Wang, Y. J. Li, Y. Wang, L. T. Ma, Z. F. Wu, Y. D. Zhang, G. Zhang, and X. B. Hang for assistance with data collection. We express our cordial thanks to Y. Wang and P. Liu for the linguistic correction of our paper. This research was financially supported by the earmarked fund for Modern Agro-industry Technology Research System (CARS-45) and Special Fund for Agro-scientific Research in the Public Interest (no. 200903006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiren Yang.

Additional information

Manuscript editor: Klaus Hartfelder

Effets de différents niveaux de protéines d’origine alimentaire sur le développement, le statut antioxidant et l’activité protéasique de l’intestin moyen des abeilles ( Apis mellifera ligustica )

Apis mellifera ligustica / protéine d’origine alimentaire / développement/antioxydant / activité protéasique / intestin moyen

Effekte des Gesamptproteingehalts in der Nahrung auf die Entwicklung, den Antioxidanz-Status und die Gesamtproteaseaktivität im Mitteldarm von Honigbienen ( Apis mellifera ligustica )

Apis mellifera ligustica / Nahrungsgesamtproteingehalt / Entwicklung / Antioxidanz-Status / Mitteldarmgesamtproteaseaktivität

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Xu, B., Wang, Y. et al. Effects of dietary crude protein levels on development, antioxidant status, and total midgut protease activity of honey bee (Apis mellifera ligustica). Apidologie 43, 576–586 (2012). https://doi.org/10.1007/s13592-012-0126-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-012-0126-0

Keywords

Navigation