Skip to main content
Log in

Characterization of a drought tolerance-related gene of Chinese cabbage in a transgenic tobacco plant

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Drought is a major abiotic stress that affects plant growth and productivity in many regions of the world. As climate change has increased the incidence of drought, research of the genes related to drought stress and development of drought-tolerant plants is necessary now more than ever. In this study, genes related to drought tolerance were screened from Brassica rapa 135k microarray data and a gene with full-length sequence and unknown function was selected and named BrDSR28 (B. rapa drought stress resistance 28). The expression of BrDSR28 was over 4-fold higher in drought-tolerant Chinese cabbage than in wild-type controls. This gene contains a 483 bp open reading frame encoding a 160 amino acid polypeptide and it contains a senescence regulator domain. To characterize the function of BrDSR28, Nicotiana tabacum was transformed with over-expression and down-regulation vectors of the gene. Transgenic tobacco plants were confirmed by PCR, Southern hybridization, and RT-PCR analyses. The expression levels and phenotypes of the transgenic tobacco plants were analyzed under drought stress. The BrDSR28 over-expression lines showed higher expression of BrDSR28 in all stages of drought treatment and showed significant tolerance to drought when compared to the non-transgenic lines and BrDSR28 down-regulated tobacco plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aubert Y, Vile D, Pervent M, Aldon D, Ranty B, Simonneau T, Vavasseur A, Galaud JP (2010) RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana. Plant Cell Physiol 51: 1975–1987

    Article  CAS  PubMed  Google Scholar 

  • Babula-Skowronska D, Ludwików A, Ciesla A, Olejnik A, Cegielska-Taras T, Bartkowiak-Broda I, Sadowski J (2015) Involvement of genes encoding ABI1 protein phosphatases in the response of Brassica napus L. to drought stress. Plant Mol Biol 88: 445–457

    Article  CAS  PubMed  Google Scholar 

  • Clauw P, Coppens F, De Beuf K, Dhondt S, van Daele T, Maleux K, Storme V, Clement L, Gonzalez N, Inzé D (2015) Leaf responses to mild drought stress in natural variants of Arabidopsis. Plant Physiol 167: 800–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deikman J, Petracek M, Heard JE (2012) Drought tolerance through biotechnology: improving translation from the laboratory to farmers’ fields. Curr Opin Biotech 23: 243–250

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycine betaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194: 325–333

    Article  CAS  Google Scholar 

  • Gan S, Amasino RM (1997) Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiol 113: 313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayano-Kanashiro C, Calderon-Vazquez C, Ibarra-Laclette E, Herrera-Estrella L, Simpson J (2009) Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation. PLoS ONE 4: e7531

    Article  Google Scholar 

  • Hu H, Xiong L (2014) Genetic engineering and breeding of droughtresistant crops. Annu Rev Plant Biol 65: 715–741

    Article  CAS  PubMed  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Summary for Policymakers. In: ML Parry, OF Canziani, JP Palutikof, PJ van der Linden, CE Hanson, eds, Climate Change 2007: Impacts, Adaptation and Vulnerability. Cambridge University Press, Cambridge, UK, pp 7-22

  • Jaleel CA, Manivannan P, Lakshmanan GMA, Gomathinayagam M, Panneerselvam R (2008) Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloid Surf B-Biointerfaces 61: 298–303

    Article  CAS  Google Scholar 

  • Jiang Y, Liang G, Yu D (2012) Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant 5: 1375–1388

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Lee K, Hwang H, Bhatnagar N, Kim DY, Yoon IS, Byun MO, Kim ST, Jung KH, Kim BG (2014) Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression. J Exp Bot 65: 453–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krannich CT, Maletzki L, Kurowsky C, Horn R (2015) Network candidate genes in breeding for drought tolerant crops. Int J Mol Sci 16: 16378–16400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MK, Kim HS, Kim SH, Park YD (2004) Analysis of T-DNA integration patterns in transgenic tobacco plants. J Plant Biol 47: 179–186

    Article  CAS  Google Scholar 

  • Lee SC, Lim MH, Kim JA, Lee SI, Kim JS, Jin M, Kwon SJ, Mun JH, Kim YK, Kim HU, Hur YK, Park BS (2008) Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray. Mol Cells 26: 595–605

    CAS  PubMed  Google Scholar 

  • Li Y, Ye W, Wang M, Yan X (2009) Climate change and drought: a risk assessment of crop-yield impacts. Clim Res 39: 31–46

    Article  CAS  Google Scholar 

  • Lim CW, Baek W, Jung J, Kim JH, Lee SC (2015) Function of ABA in stomatal defense against biotic and drought stresses. Int J Mol Sci 16: 15251–15270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol. 58: 115–136.

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2CT method. Methods 25: 402–408

    Article  CAS  PubMed  Google Scholar 

  • Monneveux P, Sánchez C, Beck D, Edmeades GO (2006) Drought tolerance improvement in tropical maize source populations: evidence of progress. Crop Sci 46: 180–191

    Article  Google Scholar 

  • Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31: 203–216

    Article  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5: 170

    Article  PubMed  PubMed Central  Google Scholar 

  • Novikova GV, Moshkov IE, Los DA (2007) Protein sensors and transducers of cold and osmotic stress in cyanobacteria and plants. J Mol Biol 41: 427–437

    Article  CAS  Google Scholar 

  • Ono K, Nishi Y, Watanabe A, Terashima I (2001) Possible mechanisms of adaptive leaf senescence. Plant Biol 3: 234–243

    Article  CAS  Google Scholar 

  • Popko J, Hansch R, Mendel RR, Polle A, Teichmann T (2010) The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biol 12: 242–258

    Article  CAS  PubMed  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15: 8–15

    Article  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161: 1189–1202

    Article  CAS  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104: 19631–19636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivero RM, Shulaev V, Blumwald E (2009) Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol 150: 1530–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2/ His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136: 2734–2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58: 221–227

    Article  CAS  PubMed  Google Scholar 

  • Specht JE, Chase K, Macrander M, Graef GL, Chung J, Markwell JP, Germann M, Orf JH, Lark KG (2001) Soybean response to water. Crop Sci 41: 493–509

    Article  CAS  Google Scholar 

  • Yang S, Vanderbeld B, Wan J, Huang Y (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3: 469–490

    Article  CAS  PubMed  Google Scholar 

  • Yu JG, Lee GH, Park YD (2016) Characterization of a Drought-Tolerance Gene, BrDSR, in Chinese Cabbage. Hortic Sci Technol 34: 102–111

    CAS  Google Scholar 

  • Zhang Y, Li Y, Gao T, Zhu H, Wang DJ (2008) Arabidopsis SDIR1 enhances drought tolerance in crop plants. Biosci Biotechnol Biochem 72: 2251–2254

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Doo Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JS., Yu, JG. & Park, YD. Characterization of a drought tolerance-related gene of Chinese cabbage in a transgenic tobacco plant. Hortic. Environ. Biotechnol. 58, 48–55 (2017). https://doi.org/10.1007/s13580-017-0157-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-017-0157-6

Additional key words

Navigation