Skip to main content
Log in

Responses of miRNAs and their target genes to nitrogen- or phosphorus-deficiency in grafted cucumber seedlings

  • Research Report
  • Tissue Culture/Biotechnology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Grafting can improve the growth and abiotic stress tolerance of cucumber. MicroRNAs (miRNAs) play important roles in regulating plant growth and development and in various stress responses. The aim of this study was to investigate the molecular mechanisms of miRNA-mediated responses to nitrogen- (N) and phosphorus- (P) deficiency in grafted cucumber (Cucumis sativus). Cucumber scions were grafted onto pumpkin (Cucurbita moschata) or C. sativus rootstocks, to yield hetero- and auto-grafted plants, respectively, and the expression of 19 miRNAs and their predicted target mRNAs under N- or P-deficiency were detected by quantitative real-time PCR. Compared with auto-grafted seedlings, hetero-grafted seedlings showed higher expression levels of most miRNAs. In the leaves of hetero-grafted cucumber seedlings, the expression of most miRNAs was increased by 24 and 48 hours of N-deficiency, but decreased by 24 and 48 hours of P-deficiency. In the roots of hetero-grafted seedlings, the expression level of most miRNAs was increased by 24 hours of N-deficiency and 48 hours of P-deficiency. In the leaves of hetero-grafted cucumber seedlings, the expression levels of most of the miRNA-target genes were increased by 24 and 48 hours of N-deficiency, but decreased by 24 and 48 hours of P-deficiency. In the roots, the expression levels of most miRNA-target genes were higher in hetero-grafted seedlings than in auto-grafted seedlings. Under N- or P-deficiency, most target genes showed markedly increased expression levels in the roots of hetero-grafted cucumber seedlings. Our results will be useful for dissecting the miRNA-mediated enhanced tolerance to N- and P-deficiency in grafted cucumber seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Achard, P., A. Herr, D.C. Baulcombe, and N.P. Harberd. 2004. Modulation of floral development by a gibberellin-regulated microRNA. Development 131;3357–3365.

    Article  CAS  PubMed  Google Scholar 

  • Allen, E., Xie, Z., Gustafson, A. M., & Carrington, J. C. 2005. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121;207–221.

    Article  CAS  PubMed  Google Scholar 

  • Aukerman, M.J. and H. Sakai. 2003. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15;2730–2741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell, M.J. and D.P. Bartel. 2005. Antiquity of microRNAs and their targets in land plants. Plant Cell 17;1658–1673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bari, R., B.D. Pant, M. Stitt, and W.-R. Scheible. 2006. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 141;988–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116;281–297.

    Article  CAS  PubMed  Google Scholar 

  • Brodersen, P., L. Sakvarelidze-Achard, M. Bruun-Rasmussen, P. Dunoyer, Y.Y. Yamamoto, L. Sieburth, and O. Voinnet. 2008. Widespread translational inhibition by plant miRNAs and siRNAs. Science 320;1185–1190.

    Article  CAS  PubMed  Google Scholar 

  • Chiou, T. and S.I. Lin. 2011. Signaling network in sensing phosphate availability in plants. Annu. Rev. Plant Biol. 62;185–206.

    Article  CAS  PubMed  Google Scholar 

  • Chiou, T.J., K. Aung, S.-I. Lin, C.C. Wu, S.F. Chiang, and C.-l. Su. 2006. Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18;412–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colla, G., C.M.C. Suárez, M. Cardarelli, and Y. Rouphael. 2010. Improving nitrogen use efficiency in melon by grafting. HortScience 45;559–565.

    Google Scholar 

  • Dai X.B. and Zhao P.X.C. 2011. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. 39;155–159.

    Article  Google Scholar 

  • Devaiah, B.N., R. Madhuvanthi, A.S. Karthikeyan, and K.G. Raghothama. 2009. Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Mol. Plant 2;43–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, D., L. Zhang, H. Wang, Z. Liu, Z. Zhang, and Y. Zheng. 2009. Differential expression of miRNAs in response to salt stress in maize roots. Ann. Bot. 103;29–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelstein, M., R. Cohen, Y. Burger, S. Shriber, S. Pivonia, and D. Shtienberg. 1999. Integrated management of sudden wilt in melons, caused by Monosporascus cannonballus, using grafting and reduced rates of methyl bromide. Plant Dis. 83;1142–1145.

    Article  Google Scholar 

  • Estañ, M.T., M.M. Martinez-Rodriguez, F. Perez-Alfocea, T.J. Flowers, and M.C. Bolarin. 2005. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J. Exp. Bot. 56;703–712.

    Article  PubMed  Google Scholar 

  • Floyd, S. K., and Bowman, J. L. 2004. Gene regulation: ancient microRNA target sequences in plants. Nature 428;485–486.

    Article  CAS  PubMed  Google Scholar 

  • Fujii, H., T.J. Chiou, S.I. Lin, K. Aung, and J. Zhu. 2005. A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 15;2038–2043.

    Article  CAS  PubMed  Google Scholar 

  • García Sánchez, F., J. Syvertsen, V. Gimeno, P. Botía, and J.G. Perez Perez. 2007. Responses to flooding and drought stress by two citrus rootstock seedlings with different water-use efficiency. Physiol. Plant. 130;532–542.

    Article  Google Scholar 

  • Gifford, M.L., A. Dean, R.A. Gutierrez, G.M. Coruzzi, and K.D. Birnbaum. 2008. Cell-specific nitrogen responses mediate developmental plasticity. Proc. Natl. Acad. Sci. USA 105;803–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagadeeswaran, G., A. Saini, and R. Sunkar. 2009. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229;1009–1014.

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades, M.W. and D.P. Bartel. 2004. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell 14;787–799.

    Article  CAS  PubMed  Google Scholar 

  • Kant, S., Y. Bi, and S.J. Rothstein. 2011. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J. Exp. Bot. 62;1499–1509.

    Article  CAS  PubMed  Google Scholar 

  • Kawashima, C.G., N. Yoshimoto, A. Maruyama Nakashita, Y.N. Tsuchiya, K. Saito, H. Takahashi, and T. Dalmay. 2009. Sulphur starvation induces the expression of microRNA395 and one of its target genes but in different cell types. Plant J. 57;313–321.

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh, B., J. Zhu, and J. Zhu. 2012. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim. Biophys. Acta, Gene Regul. Mech. 1819;137–148.

    Article  CAS  Google Scholar 

  • Kuo, H. and T.J. Chiou. 2011. The role of microRNAs in phosphorus deficiency signaling. Plant Physiol. 156;1016–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurihara, Y. and Y. Watanabe. 2004. Arabidopsis microRNA biogenesis through Dicer-like 1 protein functions. Proc. Natl. Acad. Sci. USA 101;12753–12758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lexa, M. and J.M. Cheeseman. 1997. Growth and nitrogen relations in reciprocal grafts of wild-type and nitrate reductase-deficient mutants of pea (Pisum sativum L. var. Juneau). J. Exp. Bot. 48;1241–1250.

    Article  CAS  Google Scholar 

  • Li, C.H., Y.S. Li, L.Q. Bai, T.Y. Zhang, C.X. He, Y. Yan, and X.C. Yu. 2014. Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level. Physiol. Plant. 151;406–422.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Y. Oono, J. Zhu, X. He, J. Wu, K. Iida, X. Lu, X. Cui, H. Jin, and J. Zhu. 2008. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20;2238–2251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, G., H. He, and D. Yu. 2012. Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS ONE 7;e48951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, K.H., C.Y. Huang, and Y.F. Tsay. 1999. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11;865–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, N., J. Yang, S. Guo, Y. Xu, and M. Zhang. 2013. Genome-wide identification and comparative analysis of conserved and novel microRNAs in grafted watermelon by high-throughput sequencing. PLoS ONE 8;e57359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng, Y., X. Ma, D. Chen, P. Wu, and M. Chen. 2010. MicroRNAmediated signaling involved in plant root development. Biochem. Biophys. Res. Commun. 393;345–349.

    Article  CAS  PubMed  Google Scholar 

  • Miyake, K., T. Ito, M. Senda, R. Ishikawa, T. Harada, M. Niizeki, and S. Akada. 2003. Isolation of a subfamily of genes for R2R3-MYB transcription factors showing up-regulated expression under nitrogen nutrient-limited conditions. Plant Mol. Biol. 53;237–245.

    Article  CAS  PubMed  Google Scholar 

  • Moore, R. 1982. Graft formation in Kalanchoe blossfeldiana. J. Exp. Bot. 33;533–540.

    Article  Google Scholar 

  • Pant, B.D., M. Musialak-Lange, P. Nuc, P. May, A. Buhtz, J. Kehr, D. Walther, and W.-R. Scheible. 2009. Identification of nutrientresponsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol. 150;1541–1555.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouphael, Y., M. Cardarelli, G. Colla, and E. Rea. 2008. Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. HortScience 43;730–736.

    Google Scholar 

  • Rubio, V., F. Linhares, R. Solano, A.C. Martín, J. Iglesias, A. Leyva, and J. Paz-Ares. 2001. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev. 15;2122–2133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz, J.M. and L. Romero. 1999. Nitrogen efficiency and metabolism in grafted melon plants. Sci. Hortic. 81;113–123.

    Article  CAS  Google Scholar 

  • Ruiz, J.M., A. Belakbir, I. López-Cantarero, and L. Romero. 1997. Leaf-macronutrient content and yield in grafted melon plants. A model to evaluate the influence of rootstock genotype. Sci. Hortic. 71;227–234.

    Google Scholar 

  • Salehi, R., A. Kashi, J.-M. Lee, M. Babalar, M. Delshad, S.-G. Lee, and Y.-C. Huh. 2010. Leaf gas exchanges and mineral ion composition in xylem sap of iranian melon affected by rootstocks and training methods. HortScience 45;766–770.

    Google Scholar 

  • Schachtman, D.P. and R. Shin. 2007. Nutrient sensing and signaling: NPKS. Annu. Rev. Plant Biol. 58;47–69.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz, D., Y. Rouphael, G. Colla, and J.H. Venema. 2010. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Sci. Hortic. 127;162–171.

    Article  CAS  Google Scholar 

  • Shin, R. 2011. Transcriptional regulatory components responding to macronutrient limitation. J. Plant Biol. 54;286–293.

    Article  CAS  Google Scholar 

  • Shin, R., R.H. Berg, and D.P. Schachtman. 2005. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol. 46;1350–1357.

    Article  CAS  PubMed  Google Scholar 

  • Todd, C.D., P. Zeng, A.M.R. Huete, M.E. Hoyos, and J.C. Polacco. 2004. Transcripts of MYB-like genes respond to phosphorous and nitrogen deprivation in Arabidopsis. Planta 219;1003–1009.

    Article  CAS  PubMed  Google Scholar 

  • Tsay, Y.-F., C.-C. Chiu, C.-B. Tsai, C.-H. Ho, and P.-K. Hsu. 2007. Nitrate transporters and peptide transporters. FEBS Letters 581 2290–2300.

    Article  CAS  PubMed  Google Scholar 

  • Vance, C.P., C. Uhde Stone, and D.L. Allan. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157 423–447.

    Article  CAS  Google Scholar 

  • Vidal, E.A. and R.A. Gutiérrez. 2008. A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Curr. Opin. Plant Biol. 11;521–529.

    Article  CAS  PubMed  Google Scholar 

  • Vidal, E.A., V. Araus, C. Lu, G. Parry, P.J. Green, G.M. Coruzzi, and R.A. Gutiérrez. 2010. Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 107;4477–4482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voinnet, O. 2009. Origin, biogenesis, and activity of plant microRNAs. Cell 136;669–687.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., M.Y. Park, L. Wang, Y.J. Koo, X. Chen, D. Weigel, and R.S. Poethig. 2011. miRNA control of vegetative phase change in trees. PLoS Genetics 7;e1002012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, H.J., Y.K. Ma, T. Chen, M. Wang, and X.J. Wang. 2012. PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res. 40:W22–W28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Z., S. Zhong, X. Li, W. Li, S.J. Rothstein, S. Zhang, Y. Bi, and C. Xie. 2011. Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS ONE 6;e28009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, H., G. Wang, X. Hu, H. Wang, L. Du, and Y. Zhu. 2014. Role of microRNAs in plant responses to nutrient stress. Plant Soil 374;1005–1021.

    Article  CAS  Google Scholar 

  • Zeng, H.Q., Y.Y. Zhu, S.Q. Huang, and Z.M. Yang. 2010. Analysis of phosphorus-deficient responsive miRNAs and cis elements from soybean (Glycine max L.). J. Plant Physiol. 167;1289–1297.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Y. Xu, Q. Huan, and K. Chong. 2009. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10:449.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, M., H. Ding, J. Zhu, F. Zhang, and W. Li. 2011. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytologist 190;906–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, M., H. Tai, S. Sun, F. Zhang, Y. Xu, and W. Li. 2012. Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency. PLoS ONE 7;e29669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, M., D. Li, Z. Li, Q. Hu, C. Yang, L. Zhu, and H. Luo. 2013. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol. 161;1375–1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, Q., N.M. Upadhyaya, F. Gubler, and C.A. Helliwell. 2009. Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biol. 9:149.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yansu Li.

Additional information

These authors are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Yu, X., Bai, L. et al. Responses of miRNAs and their target genes to nitrogen- or phosphorus-deficiency in grafted cucumber seedlings. Hortic. Environ. Biotechnol. 57, 97–112 (2016). https://doi.org/10.1007/s13580-016-0092-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-016-0092-y

Additional key words

Navigation