Skip to main content
Log in

The fungicide propamocarb increases lignin by activating the phenylpropanoid pathway in Cucumis sativus L.

  • Research Report
  • Genetics and Breeding
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Pesticide residue often remains on the surface of cucumber fruits after application, but the metabolic pathway and genes involved in pesticide metabolism remain unclear. In this study, we employed whole transcriptional analysis using a high-throughput tag-sequencing technique (Tag-seq) to identify the genes involved in cucumber’s metabolism of the fungicide propamocarb. Transcript abundance was investigated by analyzing gene expression profiles. Differential expression analysis revealed the up-regulation of 546 genes, and the down-regulation of 185 genes. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, genes identified from whole transcriptome analysis as related to the phenylpropanoid pathway were most significantly differentially expressed. Fourteen of these genes were up-regulated after treatment with propamocarb. Further analysis revealed that these genes encoded six enzymes: phenylalanine ammonia-lyase (PAL), cytochrome P450 (CYP), AMP-dependent CoA ligase (AMP), anthranilate Nbenzoyltransferase protein (ANP), UDP-glucosyl transferase family protein (UDP), and peroxidase (POD). Compared to the control, the activities of PAL and POD were significantly increased (p < 0.01) after treatment with propamocarb, as was lignin synthesis such that acetylbromide-extractable lignins were increased by 41.1% (p < 0.05). Based on these results, we propose that propamocarb up-regulates the expression of genes involved in the phenylpropanoid pathway, leading to induction of lignin synthesis, which in turn triggers defense mechanisms in cucumber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Andersson-Gunneras S, Mellerowicz EJ, Love J, Degerman B, Omiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T (2006) Biosynthesis of cellulose-enriched tension wood in Populus tremula: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J 46:349–359

    Article  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Chen JY, He LH, Jiang YM, Wang Y, Joyce D, Ji ZL, Lu WJ (2008) Role of phenylalanine ammonia-lyase in heat pretreatment-induced chilling tolerance in banana fruit. Physiol Plant 132:318–328

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Sheen J, Garish CG, Bolwell P (2001) Molecular identication of phenylalanine ammonia-lyase as a substrate of a specic constitutively active Arabidopsis CDPK expressed in maize protoplasts. FEBS Lett 503:185–188

    Article  CAS  PubMed  Google Scholar 

  • Cluzet S, Torregrossa C, Jacquet C, Lafitte C, Fournier J, Mercier L, Salamagne S, Briand X, Esquerre-Tugaye MT, Dumas B (2004) Gene expression profiling and protection of Medicago truncatula against a fungal infection in response to an elicitor from green algae Ulva spp. Plant Cell Environ 27:917–928

    Article  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond-Kosack KE, Jones JD (1996) Resistance genedependent plant defense responses. Plant Cell 8(10):1773–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harakava R (2005) Genes encoding enzymes of the lignin biosynthesis pathway in Eucalyptus. Genet Mol Biol 28:601–607

    Article  CAS  Google Scholar 

  • Howles PA, Sewalt VJH, Paiva NL, Elkins Y, Bate NJ, Lamb C, Dixon RA (1996) Overexpression of i-phenylalanine ammonia-lyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis. Plant Physiol 112:1617–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SW, Li RQ, Zhang ZH, Li L, Gu XF, Fan W, Lucas WJ, Wang X (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Jaegher G, Boyer N, Gaspar T (1985) Thigmomorphogenesis in Bryonia diocica: changes in soluble and bound peroxidase, phenylalanine ammonia-lyase activity, cellulose, lignin content and monomeric constituents. Plant Growth Regul 3:133–148

    Article  Google Scholar 

  • Jeandet P, Douillet-Breuil AC, Bressis R, Debora S, Spaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agr Food Chem 50:2731–2740

    Article  CAS  Google Scholar 

  • Khan NU, Vaidyanathan CS (1987) Cinnamate toxicity expression on phenylalanine a mmonia-lyase activity, germination and growth of cucumber (Cucumis sativis) seedlings. Plant Soil 97:299–302

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ0CT Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Moy P, Qutob D, Chapman BP, Atkinson I, Gijsen M (2004) Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Mol Plant Microbe In 17:1051–1062

    Article  CAS  Google Scholar 

  • Moura JCMS, Bonine CAV, Viana JOF, Darnels MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

    Article  CAS  PubMed  Google Scholar 

  • Mysore KS, Crasta OR, Tuori RP, Folkerts O, Swirsky PB, Martin GB (2002) Comprehensive transcript profiling of Pto -and Prf -mediated host defense responses to infection by Pseudomonas syringae pv. tomato. Plant J 32:299–315

    Article  CAS  PubMed  Google Scholar 

  • Pan ZY, Zeng YL, An JY, Ye JL, Xu Q, Deng XX (2012) An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits. J Proteomics 75:2670–2684

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D (1995) Amounts of pesticides reaching target pests: environmental impacts and ethics. J Agric Environ Ethics

    Google Scholar 

  • Politycka B (1998) Phenolics and the activities of phenylalanine ammonia-lyase, phenol-ß-glucosyltransferase and ß-glucosidase in cucumber roots as affected by phenolic allelochemicals. Acta Physiol Plant 20:405–410

    Article  CAS  Google Scholar 

  • Porth I, Hamberger B, White R, Ritland K (2011) Defense mechanisms against herbivory in Picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway. BMC Genomics 12:608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi XH, Xu XW, Lin XJ, Zhang WJ, Chen XH (2012) Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile. Genomics 99:160–168

    Article  CAS  PubMed  Google Scholar 

  • Tamaoki D, Kalahari I, Schreiber L, Wakasugi T, Yamada K, Kamisaka S (2006) Effects of hypergravity conditions on elongation growth and lignin formation in the inflorescence stem of Arabidopsis thaliana. J Plant Res 119:79–84

    Article  CAS  PubMed  Google Scholar 

  • Wan J, Dunning FM, Bent AF (2002) Probin plant-pathogen interactions and downstream defense signaling using DNA microarrays. Funct Integr Genomic 2:259–277

    Article  CAS  Google Scholar 

  • Wang JT, Jiang YP, Chen SC, Xia XJ, Shi K, Zhou YH, Yu YL, Yu JQ (2010) The different responses of glutathione-dependent detoxification pathway to fungicide chlorothalonil and carbendazim in tomato leaves. Chemosphere 79:958–965

    Article  CAS  PubMed  Google Scholar 

  • Wu P (2014) Propamocarb effects on antioxidant parameters and osmolyte levels of cucumber fruit differing in propamocarb residual capacity. Res J Biotechnol 9(6):1–6

    Article  Google Scholar 

  • Wu P, Qin ZW, Wu T, Zhou XY, Xin M, Guo QQ (2013a) Proteomic analysis of cucumber defense responses induced by propamocarb. J Integr Agric 12(11):2022–2035

    Article  Google Scholar 

  • Wu P, Qin ZW, Zhao W, Zhou XY, Wu T, Xin M, Guo QQ (2013b) Transcriptome analysis reveals differentially expressed genes associated with propamocarb response in cucumber (Cucumis sativus L.) fruit. Acta Physiol Plant 35:2393–2406

    Article  CAS  Google Scholar 

  • Wu P, Qin ZW, Zhou XY, Wu T, Xin M (2011) Research progress of pesticide residues in vegetables. J Northeast Agric Univ 42: 138–144

    CAS  Google Scholar 

  • Wu P, Qin ZW, Zhou XY, Wu T, Xin M, Guo QQ (2014) Study on relationship between cucumber germplasm and propamocarb residue using subjective rating technique. J Northeast Agric Univ (English Edition) 21:1–9

    Google Scholar 

  • Wu T, Qin ZW, Zhou XY, Feng Z, Du YL (2010) Transcriptome profile analysis of floral sex determination in cucumber. J Plant Physiol 167:905–913

    Article  CAS  PubMed  Google Scholar 

  • Zabala G, Zou J, Tuteja J, Gonzalez D, Clough S, Vodkin L (2006) Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection. BMC Plant Biol 6:26

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, P., Guo, Qq. & Qin, Zw. The fungicide propamocarb increases lignin by activating the phenylpropanoid pathway in Cucumis sativus L.. Hortic. Environ. Biotechnol. 57, 511–518 (2016). https://doi.org/10.1007/s13580-016-0049-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-016-0049-1

Additional key words

Navigation