Skip to main content
Log in

Growth and anthocyanin concentration of Perilla frutescens var. acuta Kudo as affected by light source and DIF under controlled environment

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of light source and DIF (difference between light and dark-period temperatures) on the growth and anthocyanin concentration of Perilla frutescens var. acuta Kudo grown in a growth chamber was examined. The plant was grown under 140 μmol·m−2·s−1 PPF provided by either cool white fluorescent lamps (FL, the control), white (W) light emitting diodes (LEDs), or a 8:1:1 mixture of red, blue and white (RBW) LEDs. Temperatures during the light-/dark-period were maintained at either 24/16 (+8 DIF), 22/18 (+4 DIF), or 20/20°C (0 DIF) with a daily mean temperature of 20°C in all treatments. Plant height increased in the FL as compared to the W and RBW LEDs treatments with +8 and +4 DIF. The RBW LEDs treatment promoted vegetative growth of the shoot and root. Chlorophyll fluorescence (Fv/Fm) was not significantly affected by the light source and DIF. Total anthocyanin concentration per leaf in the +8 DIF was higher in the RBW LEDs treatment than the other treatments. The results suggested that the RBW LEDs was the most suitable light source not only for vegetative growth, but also for the accumulation of anthocyanin under a controlled environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alokam, S., C.C. Chinnappa, and D.M. Reid. 2002. Red/far-red light mediated stem elongation and anthocyanin accumulation in Stellarialongipes: Differential response of alpine and prairie ecotypes. Can. J. Bot. 80:72–81.

    Article  CAS  Google Scholar 

  • Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Avercheva, O.V.A., Y.A. Berkovich, A.N. Erokhin, T.V. Zhigalova, S.I. Pogosyan, and S.O. Smolyanina. 2008. Growth and photosynthesis of Chinese cabbage plants grown under light-emitting diode-based light source. Russian J. Plant Physiol. 56:14–21.

    Article  Google Scholar 

  • Brenner, D.M. 1993. Perilla: Botany, uses, and genetic resources, p. 322–328. In: J. Janick and J.E. Simon (eds.). New crops. John Wiley and Sons, New York, NY.

    Google Scholar 

  • Brenner, D.M. 1995. Perilla. Purdue University New Crop Fact Sheet. http://www/hort.purdue.edu/newcrop/cropfactsheets/perilla.html.

    Google Scholar 

  • Emerson, R. and E. Rabinowitch. 1960. Red drop and role of auxiliary pigments in photosynthesis. Plant Physiol. 35:477–485.

    Article  PubMed  CAS  Google Scholar 

  • Erwin, J.E. and R.D. Heins. 1995. Thermomorphogenic responses in stem and leaf development. HortScience 30:940–949.

    Google Scholar 

  • Erwin, J.E., R.D. Heins, and M.G. Karlssen. 1989. Thermomorphogenesis in Lilium longiflorum Thumb. Am. J. Bot. 76:47–52.

    Article  Google Scholar 

  • Erwin, J.E., R.D. Heins, W. Carlson, and S. Newport. 1992. Diurnal temperature fluctuations and mechanical manipulation affect plant stemelongation. Plant Growth Regul. Soc. Amer. Q. 20:1–17.

    Google Scholar 

  • Fuleki, T. and F.J. Francis. 1968. Quantitative methods for anthocyanins. J. Food Sci. 33:72–77.

    Article  CAS  Google Scholar 

  • Goto, E. 2003. Effects of light quality on growth of crop plants under artificial lighting. Environ. Control Biol. 41:121–132.

    Article  Google Scholar 

  • Grimstad, S.O. and E. Frimanslund. 1993. Effect of different day and night temperature regimes on greenhouse cucumber young plant production, flower bud formation and early yield. Sci. Hort. 53:191–204.

    Article  Google Scholar 

  • Iwai, M., M. Ohta, H. Tsuchiya, and T. Suzuki. 2009. Effect of simultaneous light irradiation with blue-LEDs and fluorescent lamps for improving anthocyanin production in young leaves of red perilla (Perilla frutescence L.). Shokubutsu Kankyo Kogaku 21:51–58.

    Article  CAS  Google Scholar 

  • Iwai, M., M. Ohta, H. Tsuchiya, and T. Suzuki. 2010. Enhanced accumulation of caffeic acid, rosmarinic acid and luteolin-glucoside in red perilla cultivated under red diode laser and blue LED illumination followed by UV-A irradiation. J. Functional Foods 2:66–70.

    Article  CAS  Google Scholar 

  • Kataoka, I., A. Sugiyama, and K. Beppu. 2003. Role of ultraviolet radiation in accumulation of anthocyanin in berries of ‘Gros Colman’ grapes (Vitis vinifera L.). J. Japan. Soc. Hort. Sci. 72:1–6.

    Article  CAS  Google Scholar 

  • Khare, M. and K.N. Guruprasad. 1993. UV-B induced anthocyanin synthesis in maize regulated by FMN and inhibitors of FMN photoreactions. Plant Sci. 91:1–5.

    Article  CAS  Google Scholar 

  • Kim, H.H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004a. Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. HortScience 39:1617–1622.

    PubMed  Google Scholar 

  • Kim, H.H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004b. Stomatal conductance of lettuce grown under or exposed to different light quality. Ann. Bot. 94:691–697.

    Article  PubMed  Google Scholar 

  • Klein, R.M. 1992. Effects of green light on biological systems. Biol. Rev. 67:199–284.

    Article  PubMed  CAS  Google Scholar 

  • Kozai, T., K. Ohyama, F. Afreen, S. Zobayed, C. Kubota, T. Hoshi, and C. Chun. 1999. Transplant production in closed systems with artificial lighting for solving global issues on environment conservation, food, resource and energy. Proc. ACESYS III Conf., 23 July, New Brunswick, NJ. p. 31–45.

    Google Scholar 

  • Kubota, C., S. Seiyama, and T. Kozai. 2002. Manipulation of photoperiod and light intensity in low-temperature storage of eggplant plug seedlings. Sci. Hort. 94:13–20.

    Article  Google Scholar 

  • Laureati, M., S. Buratti, A. Bassoli, G. Borgonovo, and E. Pagliarini. 2010. Discrimination and characterization of three cultivars of Perilla frutescens by means of sensory descriptors and electronic nose and tongue analysis. Food Res. Intl. 43:959–964.

    Article  Google Scholar 

  • Li, Q. and C. Kubota. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Expt. Bot. 67:59–64.

    Article  CAS  Google Scholar 

  • Matsuda, R., K. Ohashi-Kaneko, K. Fujiwara, E. Goto, and K. Kurata. 2004. Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light. Plant Cell Physiol. 45:1870–1874.

    Article  PubMed  CAS  Google Scholar 

  • Matsuki, M. 1996. Regulation of plant phenolic synthesis: From biochemistry toecology and evolution. Aust. J. Bot. 44:613–634.

    Article  CAS  Google Scholar 

  • McNellis, T.W. and X.W. Deng. 1995. Light control of seedling morphogenetic pattern. Plant Cell 7:1749–1761.

    PubMed  CAS  Google Scholar 

  • Meng, L., Y. Lozano, I. Bombarda, E.M. Gaydou, and B. Li. 2009. Polyphenol extraction from eight Perilla frutescens cultivars. Comptes Rendus Chimie 12:602–611.

    Article  CAS  Google Scholar 

  • Moe, R., R.D. Heins, and J. Erwin. 1991. Stem elongation and flowering of the long-day plant Campanula isophylla Moretti in response to day and night temperature alternations and light quality. Sci. Hort. 48:141–151.

    Article  Google Scholar 

  • Murch, S.J., K. Haq, H.P.V. Rupasinghe, and P.K. Saxena. 2003. Nickel contamination affects growth and secondary metabolite composition of St. John’s wort (Hypericum perforatum L.). Environ. Expt. Bot. 49:251–257.

    Article  CAS  Google Scholar 

  • Myster, J. and R. Moe. 1995. Effect of diurnal temperature alternations on plant morphology in some greenhouse crops: A mini review. Sci. Hort. 62:205–215.

    Article  Google Scholar 

  • Nishimura, T., K. Ohyama, E. Goto, and N. Inagaki. 2009. Concentrations of perillaldehyde, limonene, and anthocyanin of Perilla plants as affected by light quality under controlled environments. Sci. Hort. 122:134–137.

    Article  CAS  Google Scholar 

  • Park, Y.G., J.E. Park, S.J. Hwang, and B.R. Jeong. 2012. Light source and CO2 concentration affect growth and anthocyanin content of lettuce under controlled environment. Hort. Environ. Biotechnol. 53:460–466.

    Article  CAS  Google Scholar 

  • Pinthus, M.J. and J. Meiri. 1979. Effects of reversal of day and night temperatures on tillering and on the elongation of stems and leaf blades of wheat. J. Expt. Bot. 30:319–326.

    Article  Google Scholar 

  • Ramalho, J.C., N.C. Marques, J.N. Semedo, M.C. Matos, and V.L. Quartin. 2002. Photosynthetic performance and pigment composition of leaves from two tropical species is determined by light quality. Plant Biol. 4:112–120.

    Article  CAS  Google Scholar 

  • Sawabe, A., T. Satake, R. Aizawa, K. Sakatani, K. Nishimoto, and C. Ozeki. 2006. Toward use of the leaves of Perillafrutescens (L.) Britton var. Acuta Kudo (red perilla) with Japanese dietary picked plum (Umeboshi). J. Oleo Sci. 55:413–422.

    Article  CAS  Google Scholar 

  • Shin, T.Y., S.H. Kim, Y.K. Kim, H.J. Park, B.S. Chae, and B.S. Jung. 2000. Inhibitory effect of mast cell-mediated immediate-type allergic reactions in rats by Perilla frutescens. Immunopharmacol. Immunotoxicol. 22:489–500.

    Article  PubMed  CAS  Google Scholar 

  • Smith, H. 1982. Light quality, photoperception, and plant strategy. Ann. Rev. Plant Physiol. 33:481–518.

    Article  CAS  Google Scholar 

  • Smith, H. 1993. Sensing the light environment: The functions of the phytochrome family. p. 377–416. In: R.E. Kendrick and G.H.M. Kronenberg (eds.). Photomorphogenesis in plants. Kluwer Academic Publ., Dordrecht, The Netherlands.

    Google Scholar 

  • Strøm, M. and R. Moe. 1997. DIF affects internode and cell extension growth and cell number in Campanula isophylla shoots. Acta Hort. 435:17–24.

    Google Scholar 

  • Thingnaes, E., S. Torre, A. Erntsen, and R. Moe. 2003. Day and night temperature responses in Arabidopsis: Effects on gibberellin and auxin content, cell size, morphology and flowering time. Ann. Bot. 92:601–612.

    Article  PubMed  CAS  Google Scholar 

  • Tsormpatsidis, E., R.G.C. Henbest, F.J. Davis, N.H. Battey, P. Hadley, and A. Wagstaffe. 2008. UV irradiance as a major influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce ‘Revolution’ grown under polyethylene films. Environ. Expt. Bot. 63:232–239.

    Article  CAS  Google Scholar 

  • Xiong, J., G.G. Patil, and R. Moe. 2002. Effect of DIF and end-of-day light quality on stem elongation in Cucumis sativus. Sci. Hort. 94:219–229.

    Article  Google Scholar 

  • Went, F.W. 1957. The experimental control of plant growth. Chron. Bot. 17:1–126.

    Google Scholar 

  • Yanovsky, M.J., T.M. Alconada-Magliano, M.A. Mazzella, C. Gatz, B. Thomas, and J.J. Casal. 1998. A affects stem growth, anthocyanin synthesis, sucrosephosphate-synthase activity and neighbor detection in sunlight-grown potato. Planta 205:235–241.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung Ryong Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, Y.G., Oh, H.J. & Jeong, B.R. Growth and anthocyanin concentration of Perilla frutescens var. acuta Kudo as affected by light source and DIF under controlled environment. Hortic. Environ. Biotechnol. 54, 103–108 (2013). https://doi.org/10.1007/s13580-013-0147-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-013-0147-2

Additional key words

Navigation