Skip to main content
Log in

Potential mechanisms associated with strawberry fruit firmness increases mediated by elevated pCO2

  • Research Report
  • Postharvest Technology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Postharvest treatment of strawberry fruit with an elevated pCO2 induces transient increases in the fruit firmness. The mechanism responsible for this firmness increase is not clearly understood. This study addressed the physiological responses of strawberry fruit to CO2 treatment to understand the factors to induce firmness increase. High CO2 treatment induced modification of pectic polymers, the decrease of water-soluble pectins (WSP) and increase of chelator-soluble pectins (CSP), which are the major factors for firmness increase. The shift of WSP to CSP is related with calcium binding to WSP. The calcium binding to wall polymers was induced without changes of PME activity and methoxy content of WSP and CSP. Our results suggested that fruit firmness increase of strawberry by postharvest CO2 treatment occurred primarily through pectin polymerization mediated by calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Blumenkrantz, N. and H.M. Asoe-Hansen. 1973. New method for quantitative determination of uronic acids. Anal. Biochem. 54:484–489.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, G.W. and D.J. Huber. 1996. Alterations in structural polysaccharides during liquefaction of tomato locule tissue. Plant Physiol. 111:447–457.

    PubMed  CAS  Google Scholar 

  • Dangyang, K., Z. Lili, and A.A. Kader. 1994. Mode of oxygen and carbon dioxide action on strawberry ester biosynthesis. J. Amer. Soc. Hort. Sci. 119:971–975.

    Google Scholar 

  • Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Robers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350–356.

    Article  CAS  Google Scholar 

  • El-kazzaz, M.K., N.F. Somner, and R.J. Fortkage. 1983. Effect of different atmospheres on postharvest decay and quality of fresh strawberries. Phytopathol. 73:282–285.

    Article  Google Scholar 

  • Fraeye, I., G. Knockkaert, S.V. Buggenhout, T. Duvetter, M. Hendrickix, and A.V. Loey. 2009. Enzyme infusion and thermal processing of strawberries: Pectin conversions related to firmness evolution. Food Chem. 114:1371–1379.

    Article  CAS  Google Scholar 

  • Goto, T., M. Goto, K. Chachin, and T. Iwata. 1995. Effect of high carbon dioxide with short-term treatment on quality of strawberry fruits. Nippon Shokuhin Kagaku Kogaku Kaishi 42:176–182.

    Article  CAS  Google Scholar 

  • Goto, T., M. Goto, K. Chachin, and T. Iwata. 1996. The mechanism of the increase of firmness in strawberry fruit treated with 100% CO2. Nippon Shokuhin Kagaku Kogaku Kaishi 43:1158–1162.

    Article  CAS  Google Scholar 

  • Grant, G.T., E.R. Morris, D.A. Rees, P.C.J. Smith, and D. Thom. 1973. Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Lett. 32:195–198.

    Article  CAS  Google Scholar 

  • Hagerman, A.E. and P.J. Ausin. 1986. Continuous spectrophotometric assay for plant pectin methyl esterase. J. Agric. Food Chem. 34:440–444.

    Article  CAS  Google Scholar 

  • Harker, F.R., H.J. Elgar, B.W. Christopher, P.J. Jackson, and I.C. Hallett. 2000. Physical and mechanical changes in strawberry fruit after high carbon dioxide treatments. Postharvest Bio. Technol. 19:139–146.

    Article  CAS  Google Scholar 

  • Huber, D.J. 1984. Strawberry fruit softening: The potential roles of polyuronides and hemicelluloses. J. Food Sci. 49:1310–1315.

    Article  CAS  Google Scholar 

  • Hwang, Y.S., Y.A. Kim, and W.S. Lee. 1999. Effect of postharvest CO2 application on the flesh firmness and quality in ‘Nyoho’ strawberries. J. Kor. Hort. Soc. Sci. 40:179–182.

    Google Scholar 

  • Ke, D., L. Goldstein, M. Omahony, and A.A. Kader. 1991. Effects of short term exposure to low O2 and high CO2 atmospheres on quality attributes of strawberries. J. Food Sci. 56:50–54.

    Article  Google Scholar 

  • Klavons, J.A. and R.D. Bennett. 1986. Determination of methanol using alcohol oxidase and its application to methyl ester content of pectins. J. Agric. Food Chem. 34:597–599.

    Article  CAS  Google Scholar 

  • Larsen, M. and C.B. Watkins. 1995. Firmness and aroma composition of strawberries following short-term high-carbon dioxide treatments. HortScience. 30:303–305.

    CAS  Google Scholar 

  • Maclachlan, G. and C. Brady. 1994. Endo-1,4-beta-glucanase, xyloglucanase, and xyloglucan endo-transglycosylase activities versus potential substrates in ripening tomatoes. Plant Physiol. 105:965–974.

    PubMed  CAS  Google Scholar 

  • Matsumoto, K., Y.S. Hwang, C.H. Lee, and D.J. Huber. 2010. Changes in firmness and pectic polysaccharide solubility in three cultivars of strawberry fruit following short-term exposure to high pCO2. J. Food Quality 33:312–328.

    Article  CAS  Google Scholar 

  • Morris, V.J., A. Gromer, and A.R. Kirby. 2009. Architecture of intracellular networks in plant matrices. Struct. Chem. 20:255–261

    Article  CAS  Google Scholar 

  • Nunes, M.C.N., K.J. Brechk, A.M.M.B. Morais, and S.A. Sargent. 1995. Physical and chemical quality characteristics of strawberries after storage are reduced by a short delay to cooling. Postharvest Biol. Technol. 6:17–28.

    Article  Google Scholar 

  • Nunes, M.C.N., A.M.M.B. Morais, J.K. Brecht, and S.A. Sargent. 2002. Fruit maturity and storage temperature influence response of strawberries to controlled atmospheres. J. Amer. Soc. Hort. Sci. 127:836–842.

    Google Scholar 

  • Pelayo, C., S.E. Ebeler, and A.A. Kader. 2003. Postharvest life and flavor quality of three strawberry cultivars kept at 5 degrees C in air or air + 20 kPa CO2. Postharvest. Biol. Technol. 27:171–183.

    Article  Google Scholar 

  • Sila, D.N., C. Smout, F. Elliot, A.V. Loey, and M. Hendrickx. 2006. Non-enzymatic depolymerization of carrot pectin: Toward a better understanding of carrot texture during thermal processing. J. Food. Sci. 71:E1–E9.

    Article  CAS  Google Scholar 

  • Siriphanich, J. 1998. High CO2 atmosphere enhances fruit firmness during storage. J. Japan. Soc. Hort. Sci. 67:1167–1170.

    Article  CAS  Google Scholar 

  • Smith, P.K., R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D. Provenzano, E.K. Fujimoto, N.M. Goeke, B.J. Olson, and D.C. Klenk. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150:76–85.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R.B. 1992. Controlled-atmosphere storage of ‘Redcoat’ strawberry fruit. J. Amer. Soc. Hort. Sci. 117:260–264.

    Google Scholar 

  • Smith, R.B. and L.J. Skog. 1992. Postharvest carbon dioxide treatment enhances firmness of several cultivars of strawberry. HortScience 27:420–421.

    CAS  Google Scholar 

  • Suzuki, K., M. Shono, and Y. Egawa. 2003. Localization of calcium in the pericarp cells of tomato fruits during the development of blossom-end rot. Protoplasm 222:149–156.

    Article  CAS  Google Scholar 

  • Tanaka, Y., N. Takase, and I. Kamiya. 1970. Studies on the CA-storage of fruits and vegetables. II. Effect of CA-storage and CO2 short term treatment on the quality of strawberry. Res. Bul. AICHI-KEN Agr. Res. Ctr. 71–77.

  • Ueda, Y. and J.H. Bai. 1993. Effect of short-term exposure of elevated CO2 on flesh firmness and ester production of strawberry. J. Japan. Soc. Hort. Sci. 62:457–464.

    Article  CAS  Google Scholar 

  • Vicente, A.R., G.A. Martinez, A.R. Chaves, and P.M. Civello. 2003. Influence of self-produced CO2 on postharvest life of heat-treated strawberries. Postharvest Biol. Technol. 27:265–275.

    Article  CAS  Google Scholar 

  • Watkins, C.B., J.E. Manzano-mendez, J.F. Nock, J.Z. Zhang, and K.E. Maloney. 1999. Cultivar variation in response of strawberry fruit to high carbon dioxide treatments. J. Sci. Food Agric. 79:886–890.

    Article  CAS  Google Scholar 

  • Werner, R.A. and C. Frenkel. 1978. Rapid changes in the firmness of peaches as influenced by temperature. HostScience 13:470–471.

    Google Scholar 

  • Werner, R.A., L.F. Hough, and C. Frenkel. 1978. Rehardening of peach fruit in cold storage. J. Amer. Soc. Hort. Sci. 103:90–91.

    Google Scholar 

  • Zhang, J.Z.J. and C.B. Watkins. 2005. Fruit quality, fermentation products, and activities of associated enzymes during elevated CO2 treatment of strawberry fruit at high and low temperatures. J. Amer. Soc. Hort. Sci. 130:124–130.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Soo Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, Y.S., Min, J.H., Kim, D.Y. et al. Potential mechanisms associated with strawberry fruit firmness increases mediated by elevated pCO2 . Hortic. Environ. Biotechnol. 53, 41–48 (2012). https://doi.org/10.1007/s13580-012-0097-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-012-0097-0

Additional key words

Navigation