Skip to main content
Log in

Acetylshikonin attenuates angiotensin II-induced proliferation and motility of human brain smooth muscle cells by inhibiting Wnt/β-catenin signaling

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Cerebrovascular smooth muscle cell proliferation and migration contribute to hyperplasia in case of cerebrovascular remodeling and stroke. In the present study, we investigated the effects of acetylshikonin, the main ingredient of a Chinese traditional medicine Zicao, on human brain vascular smooth muscle cell (HBVSMCs) proliferation and migration induced by angiotensin II (AngII), and the underlying mechanisms. We found that acetylshikonin treatment significantly inhibited AngII-induced HBVSMCs proliferation and cell cycle transition from G1 to S phase. Wound-healing assay and Transwell assay showed that AngII-induced cell migration and invasion were markedly attenuated by acetylshikonin. In addition, AngII challenge significantly induced Wnt/β-catenin signaling activation, as evidenced by increased β-catenin phosphorylation and nuclear translocation and GSK-3β phosphorylation. However, acetylshikonin treatment inhibited the activation of Wnt/β-catenin signaling. Consequently, western blotting analysis revealed that acetylshikonin effectively reduced the expression of downstream target genes in AngII-treated cells, including c-myc, survivin and cyclin D1, which contributed to the inhibitory effect of acetylshikonin on HBVSMCs proliferation. Further, stimulation with recombinant Wnt3a dramatically reversed acetylshikonin-mediated inhibition of proliferation and cell cycle transition in HBVSMCs. Our study demonstrates that acetylshikonin prevents AngII-induced cerebrovascular smooth muscle cells proliferation and migration through inhibition of Wnt/β-catenin pathway, indicating that acetylshikonin may present a potential option for the treatment of cerebrovascular remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lemarie CA, Tharaux PL, Lehoux S. Extracellular matrix alterations in hypertensive vascular remodeling. J Mol Cell Cardiol. 2010;48(3):433–9. https://doi.org/10.1016/j.yjmcc.2009.09.018.

    Article  PubMed  CAS  Google Scholar 

  2. Yu ZL, Wang JN, Wu XH, Xie HJ, Han Y, Guan YT, Qin Y, Jiang JM. Tanshinone IIA prevents rat basilar artery smooth muscle cells proliferation by inactivation of PDK1 during the development of hypertension. J Cardiovasc Pharmacol Ther. 2015;20(6):563–71. https://doi.org/10.1177/1074248415574743.

    Article  PubMed  CAS  Google Scholar 

  3. Mancia G, Messerli F, Bakris G, Zhou Q, Champion A, Pepine CJ. Blood pressure control and improved cardiovascular outcomes in the International Verapamil SR-Trandolapril Study. Hypertension. 2007;50(2):299–305. https://doi.org/10.1161/HYPERTENSIONAHA.107.090290.

    Article  PubMed  CAS  Google Scholar 

  4. Bihl JC, Zhang C, Zhao Y, Xiao X, Ma X, Chen Y, Chen S, Zhao B, Chen Y. Angiotensin-(1-7) counteracts the effects of Ang II on vascular smooth muscle cells, vascular remodeling and hemorrhagic stroke: role of the NFsmall ka, CyrillicB inflammatory pathway. Vascul Pharmacol. 2015;73:115–23. https://doi.org/10.1016/j.vph.2015.08.007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chan SH, Chan JY. Angiotensin-generated reactive oxygen species in brain and pathogenesis of cardiovascular diseases. Antioxid Redox Signal. 2013;19(10):1074–84. https://doi.org/10.1089/ars.2012.4585.

    Article  PubMed  CAS  Google Scholar 

  6. Wang XM, Xiao H, Liu LL, Cheng D, Li XJ, Si LY. FGF21 represses cerebrovascular aging via improving mitochondrial biogenesis and inhibiting p53 signaling pathway in an AMPK-dependent manner. Exp Cell Res. 2016;346(2):147–56. https://doi.org/10.1016/j.yexcr.2016.06.020.

    Article  PubMed  CAS  Google Scholar 

  7. Wang Y, Ma TT, Gao NN, Zhou XL, Jiang H, Guo R, Jia LN, Chang H, Gao Y, Gao ZM, Pan L. Effect of Tongxinluo on pulmonary hypertension and pulmonary vascular remodeling in rats exposed to a low pressure hypoxic environment. J Ethnopharmacol. 2016;194:668–73. https://doi.org/10.1016/j.jep.2016.10.004.

    Article  PubMed  Google Scholar 

  8. Tsai FJ, Ho TJ, Cheng CF, Liu X, Tsang H, Lin TH, Liao CC, Huang SM, Li JP, Lin CW, Lin JG, Lin JC, Lin CC, Liang WM, Lin YJ. Effect of Chinese herbal medicine on stroke patients with type 2 diabetes. J Ethnopharmacol. 2017;200:31–44. https://doi.org/10.1016/j.jep.2017.02.024.

    Article  PubMed  Google Scholar 

  9. Chen X, Yang L, Oppenheim JJ, Howard MZ. Cellular pharmacology studies of shikonin derivatives. PTR. 2002;16(3):199–209. https://doi.org/10.1002/ptr.1100.

    Article  PubMed  CAS  Google Scholar 

  10. Li Q, Zeng J, Su M, He Y, Zhu B. Acetylshikonin from Zicao attenuates cognitive impairment and hippocampus senescence in d-galactose-induced aging mouse model via upregulating the expression of SIRT1. Brain Res Bull. 2018;137:311–8. https://doi.org/10.1016/j.brainresbull.2018.01.007.

    Article  PubMed  CAS  Google Scholar 

  11. Su ML, He Y, Li QS, Zhu BH. Efficacy of acetylshikonin in preventing obesity and hepatic steatosis in db/db mice. Molecules. 2016. https://doi.org/10.3390/molecules21080976.

    Article  PubMed  Google Scholar 

  12. Su M, Huang W, Zhu B. Acetylshikonin from zicao prevents obesity in rats on a high-fat diet by inhibiting lipid accumulation and inducing lipolysis. PLoS One. 2016;11(1):e0146884. https://doi.org/10.1371/journal.pone.0146884.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zhang X, Hu W, Wu F, Yuan X, Hu J. Shikonin inhibits TNF-alpha-induced growth and invasion of rat aortic vascular smooth muscle cells. Can J Physiol Pharmacol. 2015;93(8):615–24.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang ZQ, Cao XC, Zhang L, Zhu WL. Effect of shikonin, a phytocompound from Lithospermum erythrorhizon, on rat vascular smooth muscle cells proliferation and apoptosis in vitro. Zhonghua Yi Xue Za Zhi. 2005;85(21):1484–8.

    PubMed  CAS  Google Scholar 

  15. Rao TP, Kuhl M. An updated overview on Wnt signaling pathways: a prelude for more. Circ Res. 2010;106(12):1798–806. https://doi.org/10.1161/CIRCRESAHA.110.219840.

    Article  PubMed  CAS  Google Scholar 

  16. Tsaousi A, Mill C, George SJ. The Wnt pathways in vascular disease: lessons from vascular development. Curr Opin Lipidol. 2011;22(5):350–7. https://doi.org/10.1097/MOL.0b013e32834aa701.

    Article  PubMed  CAS  Google Scholar 

  17. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149(6):1192–205. https://doi.org/10.1016/j.cell.2012.05.012.

    Article  PubMed  CAS  Google Scholar 

  18. Handeli S, Simon JA. A small-molecule inhibitor of Tcf/beta-catenin signaling down-regulates PPARgamma and PPARdelta activities. Mol Cancer Ther. 2008;7(3):521–9. https://doi.org/10.1158/1535-7163.MCT-07-2063.

    Article  PubMed  CAS  Google Scholar 

  19. Bao XL, Song H, Chen Z, Tang X. Wnt3a promotes epithelial-mesenchymal transition, migration, and proliferation of lens epithelial cells. Mol Vis. 2012;18:1983–90.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Marchand A, Atassi F, Gaaya A, Leprince P, Le Feuvre C, Soubrier F, Lompre AM, Nadaud S. The Wnt/beta-catenin pathway is activated during advanced arterial aging in humans. Aging Cell. 2011;10(2):220–32. https://doi.org/10.1111/j.1474-9726.2010.00661.x.

    Article  PubMed  CAS  Google Scholar 

  21. Wu X, Liu W, Jiang H, Chen J, Wang J, Zhu R, Li B. Kindlin-2 siRNA inhibits vascular smooth muscle cell proliferation, migration and intimal hyperplasia via Wnt signaling. Int J Mol Med. 2016;37(2):436–44. https://doi.org/10.3892/ijmm.2015.2429.

    Article  PubMed  CAS  Google Scholar 

  22. Cui M, Cai Z, Chu S, Sun Z, Wang X, Hu L, Yi J, Shen L, He B. Orphan nuclear receptor Nur77 inhibits angiotensin II-induced vascular remodeling via downregulation of beta-catenin. Hypertension. 2016;67(1):153–62. https://doi.org/10.1161/HYPERTENSIONAHA.115.06114.

    Article  PubMed  CAS  Google Scholar 

  23. Hua JY, He YZ, Xu Y, Jiang XH, Ye W, Pan ZM. Emodin prevents intima thickness via Wnt4/Dvl-1/beta-catenin signaling pathway mediated by miR-126 in balloon-injured carotid artery rats. Exp Mol Med. 2015;47:e170. https://doi.org/10.1038/emm.2015.36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Tsaousi A, Williams H, Lyon CA, Taylor V, Swain A, Johnson JL, George SJ. Wnt4/beta-catenin signaling induces VSMC proliferation and is associated with intimal thickening. Circ Res. 2011;108(4):427–36. https://doi.org/10.1161/CIRCRESAHA.110.233999.

    Article  PubMed  CAS  Google Scholar 

  25. Novellasdemunt L, Antas P, Li VS. Targeting Wnt signaling in colorectal cancer. A review in the theme: cell signaling: proteins, pathways and mechanisms. Am J Physiol Cell Physiol. 2015;309(8):C511–21. https://doi.org/10.1152/ajpcell.00117.2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW. Identification of c-MYC as a target of the APC pathway. Science. 1998;281(5382):1509–12.

    Article  PubMed  CAS  Google Scholar 

  27. Altieri DC. Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer. 2008;8(1):61–70. https://doi.org/10.1038/nrc2293.

    Article  PubMed  CAS  Google Scholar 

  28. Chiron D, Martin P, Di Liberto M, Huang X, Ely S, Lannutti BJ, Leonard JP, Mason CE, Chen-Kiang S. Induction of prolonged early G1 arrest by CDK4/CDK6 inhibition reprograms lymphoma cells for durable PI3Kdelta inhibition through PIK3IP1. Cell Cycle. 2013;12(12):1892–900. https://doi.org/10.4161/cc.24928.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wang X, Xiao Y, Mou Y, Zhao Y, Blankesteijn WM, Hall JL. A role for the beta-catenin/T-cell factor signaling cascade in vascular remodeling. Circ Res. 2002;90(3):340–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongyue Dai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yan, Z., Xu, C. et al. Acetylshikonin attenuates angiotensin II-induced proliferation and motility of human brain smooth muscle cells by inhibiting Wnt/β-catenin signaling. Human Cell 31, 242–250 (2018). https://doi.org/10.1007/s13577-018-0207-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-018-0207-0

Keywords

Navigation