Skip to main content
Log in

Inhibition of angiotensin II-induced cerebrovascular smooth muscle cell proliferation by LRRC8A downregulation through suppressing PI3K/AKT activation

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Cerebrovascular smooth muscle cell proliferation is the major contributor to cerebrovascular remodeling and stroke. Chloride channels have been suggested to play an important role in the regulation of smooth muscle cell proliferation. This study aims to investigate the effect of leucine-rich repeat-containing 8A (LRRC8A), an essential component of volume-sensitive chloride channels, on cerebrovascular smooth muscle cell proliferation. The data showed that LRRC8A expression was increased in mouse brain artery during angiotensin II (AngII)-induced cerebrovascular remodeling. Similarly, AngII also increased the expression of LRRC8A in human brain vascular smooth muscle cells (HBVSMCs). Knockdown of LRRC8A by siRNA significantly inhibited AngII-induced the proliferation, migration, and invasion in HBVSMCs. The inhibition of HBVSMCs proliferation by LRRC8A downregulation appeared to be involved in suppression of cell-cycle transition. AngII-induced the decrease in p21 and p27 expression and the increase in CDK4 and cyclin D1 expression were attenuated by LRRC8A downregulation. Moreover, inhibition of LRRC8A suppressed AngII-induced PI3K/AKT activation and reactive oxygen species generation, but had no effect on JNK, ERK, and p38 phosphorylation. In addition, activation of PI3K/AKT-signaling pathways with specific agonists significantly abolished the effect of LRRC8A deficiency on HBVSMC proliferation. This present study demonstrates that knockdown of LRRC8A ameliorates AngII-induced cerebrovascular smooth muscle cell proliferation via inhibiting PI3K/AKT pathway, suggesting that LRRC8A may be a novel molecular target in the treatment of vascular remodeling and stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang W, Jiang B, Sun H, Ru X, Sun D, Wang L, et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults. Circulation. 2017;135(8):759–71. https://doi.org/10.1161/CIRCULATIONAHA.116.025250.

    Article  PubMed  Google Scholar 

  2. Feigin VL, Krishnamurthi RV, Parmar P, Norrving B, Mensah GA, Bennett DA, et al. Update on the global burden of ischemic and hemorrhagic stroke in 1990–2013: the GBD 2013 Study. Neuroepidemiology. 2015;45(3):161–76. https://doi.org/10.1159/000441085.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu L, Wang D, Wong KS, Wang Y. Stroke and stroke care in China: huge burden, significant workload, and a national priority. Stroke. 2011;42(12):3651–4. https://doi.org/10.1161/STROKEAHA.111.635755.

    Article  PubMed  Google Scholar 

  4. Mancia G, Messerli F, Bakris G, Zhou Q, Champion A, Pepine CJ. Blood pressure control and improved cardiovascular outcomes in the International Verapamil SR-Trandolapril Study. Hypertension. 2007;50(2):299–305. https://doi.org/10.1161/HYPERTENSIONAHA.107.090290.

    Article  CAS  PubMed  Google Scholar 

  5. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–209. https://doi.org/10.1161/CIR.0b013e3182009701.

    Article  PubMed  Google Scholar 

  6. Galatioto J, Caescu CI, Hansen J, Cook JR, Miramontes I, Iyengar R, et al. Cell type-specific contributions of the angiotensin II type 1a receptor to aorta homeostasis and aneurysmal disease-brief report. Arterioscler Thromb Vasc Biol. 2018;38(3):588–91. https://doi.org/10.1161/ATVBAHA.117.310609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ma MM, Lin CX, Liu CZ, Gao M, Sun L, Tang YB, et al. Threonine532 phosphorylation in ClC-3 channels is required for angiotensin II-induced Cl(−) current and migration in cultured vascular smooth muscle cells. Br J Pharmacol. 2016;173(3):529–44. https://doi.org/10.1111/bph.13385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yaghini FA, Song CY, Lavrentyev EN, Ghafoor HU, Fang XR, Estes AM, et al. Angiotensin II-induced vascular smooth muscle cell migration and growth are mediated by cytochrome P450 1B1-dependent superoxide generation. Hypertension. 2010;55(6):1461–7. https://doi.org/10.1161/HYPERTENSIONAHA.110.150029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chan SH, Chan JY. Angiotensin-generated reactive oxygen species in brain and pathogenesis of cardiovascular diseases. Antioxid Redox Signal. 2013;19(10):1074–84. https://doi.org/10.1089/ars.2012.4585.

    Article  CAS  Google Scholar 

  10. Wang XM, Xiao H, Liu LL, Cheng D, Li XJ, Si LY. FGF21 represses cerebrovascular aging via improving mitochondrial biogenesis and inhibiting p53 signaling pathway in an AMPK-dependent manner. Exp Cell Res. 2016;346(2):147–56. https://doi.org/10.1016/j.yexcr.2016.06.020.

    Article  CAS  PubMed  Google Scholar 

  11. Nilius B, Droogmans G. Amazing chloride channels: an overview. Acta Physiol Scand. 2003;177(2):119–47. https://doi.org/10.1046/j.1365-201X.2003.01060.x.

    Article  CAS  PubMed  Google Scholar 

  12. Lu J, Xu F, Zhang Y, Lu H, Zhang J. ClC-2 knockdown prevents cerebrovascular remodeling via inhibition of the Wnt/beta-catenin signaling pathway. Cell Mol Biol Lett. 2018;23:29. https://doi.org/10.1186/s11658-018-0095-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grodin JL, Mullens W, Dupont M, Taylor DO, McKie PM, Starling RC, et al. Hemodynamic factors associated with serum chloride in ambulatory patients with advanced heart failure. Int J Cardiol. 2018;252:112–6. https://doi.org/10.1016/j.ijcard.2017.11.024.

    Article  PubMed  Google Scholar 

  14. Qiu Z, Dubin AE, Mathur J, Tu B, Reddy K, Miraglia LJ, et al. SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell. 2014;157(2):447–58. https://doi.org/10.1016/j.cell.2014.03.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Voss FK, Ullrich F, Munch J, Lazarow K, Lutter D, Mah N, et al. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science. 2014;344(6184):634–8. https://doi.org/10.1126/science.1252826.

    Article  CAS  PubMed  Google Scholar 

  16. Feihl F, Liaudet L, Waeber B. The macrocirculation and microcirculation of hypertension. Curr Hypertens Rep. 2009;11(3):182–9.

    Article  PubMed  Google Scholar 

  17. Chiron D, Martin P, Di Liberto M, Huang X, Ely S, Lannutti BJ, et al. Induction of prolonged early G1 arrest by CDK4/CDK6 inhibition reprograms lymphoma cells for durable PI3Kdelta inhibition through PIK3IP1. Cell Cycle. 2013;12(12):1892–900. https://doi.org/10.4161/cc.24928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sharp ZD, Bartke A. Evidence for down-regulation of phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR)-dependent translation regulatory signaling pathways in Ames dwarf mice. J Gerontol Ser A Biol Sci Med Sci. 2005;60(3):293–300.

    Article  Google Scholar 

  19. Liu F, Yang X, Geng M, Huang M. Targeting ERK, an Achilles’ Heel of the MAPK pathway, in cancer therapy. Acta Pharm Sin B. 2018;8(4):552–62. https://doi.org/10.1016/j.apsb.2018.01.008.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, Walsh K, et al. Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem. 1999;274(32):22699–704.

    Article  CAS  PubMed  Google Scholar 

  21. Sardini A, Amey JS, Weylandt KH, Nobles M, Valverde MA, Higgins CF. Cell volume regulation and swelling-activated chloride channels. Biochem Biophys Acta. 2003;1618(2):153–62.

    Article  CAS  PubMed  Google Scholar 

  22. Cheng G, Kim MJ, Jia G, Agrawal DK. Involvement of chloride channels in IGF-I-induced proliferation of porcine arterial smooth muscle cells. Cardiovasc Res. 2007;73(1):198–207. https://doi.org/10.1016/j.cardiores.2006.10.012.

    Article  CAS  PubMed  Google Scholar 

  23. Eechoute K, Sparreboom A, Burger H, Franke RM, Schiavon G, Verweij J, et al. Drug transporters and imatinib treatment: implications for clinical practice. Clin Cancer Res. 2011;17(3):406–15. https://doi.org/10.1158/1078-0432.CCR-10-2250.

    Article  CAS  Google Scholar 

  24. Yang C, He L, Chen G, Ning Z, Xia Z. LRRC8A potentiates temozolomide sensitivity in glioma cells via activating mitochondria-dependent apoptotic pathway. Hum Cell. 2019;32(1):41–50. https://doi.org/10.1007/s13577-018-0221-2.

    Article  CAS  PubMed  Google Scholar 

  25. Sorensen BH, Nielsen D, Thorsteinsdottir UA, Hoffmann EK, Lambert IH. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase-9/-3 activation. Am J Physiol Cell Physiol. 2016;310(11):C857–73. https://doi.org/10.1152/ajpcell.00256.2015.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stuhlmann T, Planells-Cases R, Jentsch TJ. LRRC8/VRAC anion channels enhance beta-cell glucose sensing and insulin secretion. Nat Commun. 2018;9(1):1974. https://doi.org/10.1038/s41467-018-04353-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bao J, Perez CJ, Kim J, Zhang H, Murphy CJ, Hamidi T, et al. Deficient LRRC8A-dependent volume-regulated anion channel activity is associated with male infertility in mice. JCI Insight. 2018. https://doi.org/10.1172/jci.insight.99767.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Morgan DO. Principles of CDK regulation. Nature. 1995;374(6518):131–4. https://doi.org/10.1038/374131a0.

    Article  CAS  PubMed  Google Scholar 

  29. Choi H, Ettinger N, Rohrbough J, Dikalova A, Nguyen HN, Lamb FS. LRRC8A channels support TNFalpha-induced superoxide production by Nox1 which is required for receptor endocytosis. Free Radic Biol Med. 2016;101:413–23. https://doi.org/10.1016/j.freeradbiomed.2016.11.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiewen Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2304 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Xu, F. & Zhang, J. Inhibition of angiotensin II-induced cerebrovascular smooth muscle cell proliferation by LRRC8A downregulation through suppressing PI3K/AKT activation. Human Cell 32, 316–325 (2019). https://doi.org/10.1007/s13577-019-00260-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-019-00260-6

Keywords

Navigation