Skip to main content

Advertisement

Log in

Conditioned media from differentiating craniofacial bone marrow stromal cells influence mineralization and proliferation in periodontal ligament stem cells

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Previous reports have mainly focused on the behavioral responses of human periodontal ligament stem cells (hPDLSCs) in interaction with tibia bone marrow stromal cells (BMSCs). However, there is little study on the biologic features of hPDLSCs under the induction of maxilla BMSCs (M-BMSCs) at different phases of osteogenic differentiation. We hypothesized that M-BMSCs undergoing osteogenic differentiation acted on the proliferation, differentiation, and bone-forming capacity of hPDLSCs. In this paper, primary hPDLSCs and human M-BMSCs (hM-BMSCs) were expanded in vitro. After screening of surface markers for characterization, hPDLSCs were cocultured with different phases of differentiating hM-BMSCs. Cell proliferation and alkaline phosphatase activity were examined, and mineralization-associated markers such as osteocalcin and runt-related transcription factor 2 of hPDLSCs in coculture with uninduced/osteoinduced hM-BMSCs were evaluated. hPDLSCs in hM-BMSCs-conditioned medium (hM-BMSCs-CM) group showed a reduction in proliferation compared with untreated hPDLSCs, while osteoinduced hM-BMSCs for 10 day-conditioned medium (hM-BMSCs-CM-10ds) and osteoinduced hM-BMSCs for 15 day-conditioned medium (hM-BMSCs-CM-15ds) enhance the proliferation of hPDLSCs. hM-BMSCs of separate differentiation stages temporarily inhibited osteogenesis of hPDLSCs in the early days. Upon extending time periods, uninduced/osteoinduced hM-BMSCs markedly enhanced osteogenesis of hPDLSCs to different degrees. The transplantation results showed hM-BMSCs-CM-15ds treatment promoted tissue regeneration to generate cementum/periodontal ligament-like structure characterized by hard-tissue formation. This research supported the notion that hM-BMSCs triggered osteogenesis of hPDLSCs suggesting important implications for periodontal engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vuddhakanok S, Solt CW, Mitchell JC, Foreman DW, Alger FA. Histologic evaluation of periodontal attachment apparatus following the insertion of a biodegradable copolymer barrier in humans. J Periodontol. 1993;64(3):202–10. doi:10.1902/jop.1993.64.3.202.

    Article  CAS  PubMed  Google Scholar 

  2. Gay IC, Chen S, MacDougall M. Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod Craniofac Res. 2007;10:149–60. doi:10.1038/ijos.2015.42.

    Article  CAS  PubMed  Google Scholar 

  3. Ivanovski S, Gronthos S, Shi S, Bartold PM. Stem cells in the periodontal ligament. Oral Dis. 2006;12:358–63. doi:10.1111/j.1601-0825.2006.01253.x.

    Article  CAS  PubMed  Google Scholar 

  4. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41. doi:10.1038/nature00870.

    Article  CAS  PubMed  Google Scholar 

  5. Chen SC, Marino V, Gronthos S, Bartold PM. Location of putative stem cells in human periodontal ligament. J Periodontal Res. 2006;41:547–53. doi:10.1111/j.1600-0765.2006.00904.x.

    Article  CAS  PubMed  Google Scholar 

  6. Jo YY, Lee HJ, Kook SY, Choung HW, Park JY, Chung JH, et al. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng. 2007;13:767–73. doi:10.1089/ten.2006.0192.

    Article  CAS  PubMed  Google Scholar 

  7. Lang H, Schuler N, Nolden R. Attachment formation following replantation of cultured cells into periodontal defects–a study in minipigs. J Dent Res. 1998;77:393–405. doi:10.1177/00220345980770020801.

    Article  CAS  PubMed  Google Scholar 

  8. Kawaguchi H, Hirachi A, Hasegawa N, Iwata T, Hamaguchi H, Shiba H, et al. Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells. J Periodontol. 2004;75:1281–7. doi:10.1902/jop.2004.75.9.1281.

    Article  PubMed  Google Scholar 

  9. Hasegawa N, Kawaguchi H, Hirachi A, Takeda K, Mizuno N, Nishimura M, et al. Behavior of transplanted bone marrow-derived mesenchymal stem cells in periodontal defects. J Periodontol. 2006;77:1003–7. doi:10.1902/jop.2006.050341.

    Article  PubMed  Google Scholar 

  10. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36:568–84. doi:10.1016/j.biocel.2003.11.001.

    Article  CAS  PubMed  Google Scholar 

  11. Simann M, Schneider V, Le Blanc S, Dotterweich J, Zehe V, Krug M, et al. Heparin affects human bone marrow stromal cell fate: promoting osteogenic and reducing adipogenic differentiation and conversion. Bone. 2015;78:102–13. doi:10.1016/j.bone.2015.04.039.

    Article  CAS  PubMed  Google Scholar 

  12. Xie Han, Liu Hongwei. A novel mixed-type stem cell pellet for cementum/periodontal ligament-like complex. J Periodontol. 2012;83:805–15. doi:10.1902/jop.2011.110267.

    Article  CAS  PubMed  Google Scholar 

  13. Proksch S, Steinberg T, Vach K, Hellwig E, Tomakidi P. Shaping oral cell plasticity to osteogenic differentiation by human mesenchymal stem cell coculture. Cell Tissue Res. 2014;356(1):159–70. doi:10.1007/s00441-013-1777-5.

    Article  PubMed  Google Scholar 

  14. Bunting KD, Hawley RG. Integrative molecular and developmental biology of adult stem cells. Biol Cell. 2003;95:563–78.

    Article  CAS  PubMed  Google Scholar 

  15. Kinnaird T, Srabile E, Burnett MS, Shou M, Lee CW, Barr S, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 2004;109:1543. doi:10.1161/01.CIR.0000124062.31102.57.

    Article  CAS  PubMed  Google Scholar 

  16. Britanova O, Depew MJ, Schwark M, Thomas BL, Miletich I, Sharpe P, et al. Satb2 haploinsufficiency phenocopies 2q32-q33 deletions, whereas loss suggests a fundamental role in the coordination of jaw development. Am J Hum Genet. 2006;79(4):668–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seo BM, Miura M, Gronthos S, Bartold PM, Batoulli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149–55.

    Article  CAS  PubMed  Google Scholar 

  18. Zheng W, Wang S, Wang J, Jin F. Periodontitis promotes the proliferation and suppresses the differentiation potential of human periodontal stem cells. Int J Mol Med. 2015;36(4):915–22. doi:10.3892/ijmm.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Park JC, Kim JC, Kim YT, Choi SH, Cho KS, Im GI, et al. Acquisition of human alveolar bone-derived stromal cells using minimally irrigated implant osteotomy: in vitro and in vivo evaluations. J Clin Periodontol. 2012;39:495–505. doi:10.1111/j.1600-051X.2012.01865.x.

    Article  CAS  PubMed  Google Scholar 

  20. Hendudari F, Piryaei A, Hassani SN, Darbandi H, Bayat M. Combined effects of low-level laser therapy and human bone marrow mesenchymal stem cell conditioned medium on viability of human dermal fibroblasts cultured in a high-glucose medium. Lasers Med Sci. 2016. doi:10.1007/s10103-016-1867-1.

    PubMed  Google Scholar 

  21. Sun H, Wu C, Dai K, Chang J, Tang T. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics. Biomaterials. 2006;27(33):5651–7. doi:10.1016/j.biomaterials.2006.07.027.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao BJ, Liu YH. Simvastatin induces the osteogenic differentiation of human periodontal ligament stem cells. Fundam Clin Pharmacol. 2014;28(5):583–92. doi:10.1111/fcp.12050.

    Article  CAS  PubMed  Google Scholar 

  23. Yang ZH, Zhang XJ, Dang NN, Ma ZF, Xu L, Wu JJ. Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues. J Periodontal Res. 2009;44:199–210. doi:10.1111/j.1600-0765.2008.01106.x.

    Article  PubMed  Google Scholar 

  24. Russell KC, Phinney DG, Lacey MR, Barrilleaux BL, Meyertholen KE, O Connor KC. In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells. 2010;28:788–98. doi:10.1002/stem.312.

    Article  CAS  PubMed  Google Scholar 

  25. Vacanti V, Kong E, Suzuki G, Sato K, Canty JM, Lee T. Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. J Cell Physiol. 2005;205:194–201. doi:10.1002/jcp.20376.

    Article  CAS  PubMed  Google Scholar 

  26. Dominici M, Le Blanc K, Mueller I, Slaper Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  27. Li B, Lu D, Chen Y, Zhao M, Zuo L. Unfractionated heparin promotes osteoclast formation in vitro by inhibiting osteoprotegerin activity. Int J MoI Sci. 2016. doi:10.3390/ijms17040613.

    Google Scholar 

  28. Frith J, Genever P. Transcriptional control of mesenchymal stem cell differentiation. Transfus Med Hemother. 2008;35:216–27. doi:10.000127448.

  29. Li Feng, Whyte Noelle, Niyibizi Christopher. Differentiating multipotent mesenchymal stromal cells generate factors that exert paracrine activities on exogenous MSCs: implications for paracrine activities in bone regeneration. Biochem Biophys Res Commun. 2012;426:475–9. doi:10.1016/j.bbrc.2012.08.095.

    Article  CAS  PubMed  Google Scholar 

  30. Heino TJ, Hentunen TA, Vaananen HK. Conditioned medium from osteocytes stimulates the proliferation of bone marrow mesenchymal stem cells and their differentiation into osteoblasts. Exp Cell Res. 2004;294:458–68. doi:10.1016/j.yexcr.2003.11.016.

    Article  CAS  PubMed  Google Scholar 

  31. Sun Jing, Zhou Huifang, Deng Yuan, Zhang Y, Gu P, Ge S, et al. Conditioned medium from bone marrow mesenchymal stem cells transiently retards osteoblast differentiation by downregulating Runx2. Cells Tissues Organs. 2012;196:510–22. doi:10.1159/000339245.

    Article  CAS  PubMed  Google Scholar 

  32. Osugi M, Katagiri W, Yoshimi R, Inukai T, Hibi H, Ueda M. Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng Part A. 2012;18(13–14):1479–89. doi:10.1089/ten.TEA.2011.0325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Proksch S, Steinberg T, Stampf S, Schwarz U, Hellwig E, Tomakidi P. Crosstalk on cell behavior in interactive cocultures of hMSCs with various oral cell types. Tissue Eng Part A. 2012;18:2601–10. doi:10.1089/ten.TEA.2012.0041.

    Article  CAS  PubMed  Google Scholar 

  34. Ogiso B, Hughes FJ, Melcher AH, McCulloch CA. Fibroblasts inhibit mineralised bone nodule formation by rat bone marrow stromal cells in vitro. J Cell Physiol. 1991;146:442–50. doi:10.1002/jcp.1041460315.

    Article  CAS  PubMed  Google Scholar 

  35. Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Farinas I, et al. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell. 2006;125:971–86.

    Article  CAS  PubMed  Google Scholar 

  36. Yazawa H, Zimmermann B, Asami Y, Bernimoulin J. Simvastatin promotes cell metabolism, proliferation, and osteoblastic differentiation in human periodontal ligament cells. J Periodontol. 2005;76:295–302.

    Article  CAS  PubMed  Google Scholar 

  37. D’Errico J, Berry JH, Ouyang H, Strayhorn C, Windle J, Somerman M. Employing a transgenic animal model to obtain cementoblasts in vitro. J Periodontol. 2000;71(1):63–72.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported through the Fundamental Research Funds for the National Science Foundation of China (81271152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Z., Feng, Y. & Liu, H. Conditioned media from differentiating craniofacial bone marrow stromal cells influence mineralization and proliferation in periodontal ligament stem cells. Human Cell 29, 162–175 (2016). https://doi.org/10.1007/s13577-016-0144-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-016-0144-8

Keywords

Navigation