Skip to main content

Advertisement

Log in

Mechanism of Cyclic Tensile Stress in Osteogenic Differentiation of Human Periodontal Ligament Stem Cells

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Human periodontal ligament stem cells (hPDLSCs) can undergo osteogenic differentiation under induction conditions. Cyclic tensile stress (CTS) can stimulate stem cell osteogenic differentiation. The present study explored the mechanism of CTS in hPDLSC osteogenic differentiation. The hPDLSCs of the 4th passage were selected. hPDLSCs were subjected to CTS with deformation of 10% elongation at 0.5 Hz for 1, 4, 8, 12 and 24 h. ALP activity and staining, ARS staining and detection of expressions of osteogenesis-related genes (RUNX2, OPN, Sp7 and OCN) were used to assess hPDLSC osteogenic differentiation ability. microRNA (miR)-129-5p and BMP2 expression and p-Smad1/5 level were detected under CTS stimulation. The binding relationship between miR-129-5p and BMP2 was predicted and verified. The osteogenic differentiation ability of CTS-treated hPDLSCs was evaluated after intervention of miR-129-5p and BMP2. CTS induced hPDLSC osteogenic differentiation, as manifested by increased ALP activities, osteogenesis-related gene expressions and mineralized nodules, together with positive ALP staining. CTS inhibited miR-129-5p expression, and promoted BMP2 expression and p-Smad1/5 level in hPDLSCs. miR-129-5p targeted BMP2. Overexpressed miR-129-5p or silenced BMP2 prevented hPDLSC osteogenic differentiation ability. We demonstrated that CTS inhibited miR-129-5p expression, and then activated the BMP2/Smad pathway, thereby showing stimulative effects on hPDLSC osteogenic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

α-MEM:

Alpha-minimal essential medium

DMEM:

Dulbecco’s modified Eagle’s medium

PBS:

Phosphate buffer solution

FBS:

Fetal bovine serum

BSA:

Bovine serum albumin

BCA:

Bicinchoninic acid

PDLCs:

Human periodontal ligament cells

LSD:

Least significant difference

PDL:

Periodontal ligament

MSCs:

Mesenchymal stem cells

hPDLSCs:

Human periodontal ligament stem cells

miR:

MicroRNA

IgG:

Immunoglobulin G

ANOVA:

Analysis of variance

wt:

Wild-type

mut:

Mutant

ADSCs:

Adipose-derived stem cells

CTS:

Cyclic tensile stress

ALP:

Alkalin phospatase

ARS:

Alizarin red S

RUNX2:

Runt-related transcription factor-2

OPN:

Osteopontin

OCN:

Osteocalcin

BMP2:

Bone morphogenetic protein 2

Smad:

Drosophila mothers against decapentaplegic

STRO-1:

Stromal precursor antigen-1

CD:

Cluster of differentiation

si-RNAs:

Small-interfering RNAs

NC:

Negative control

cDNA:

Complementary DNA

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

References

  1. Hyun SY, Lee JH, Kang KJ, Jang YJ (2017) Effect of FGF-2, TGF-beta-1, and BMPs on teno/ligamentogenesis and osteo/cementogenesis of human periodontal ligament stem cells. Mol Cells 40:550–557. https://doi.org/10.14348/molcells.2017.0019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wei F, Yang S, Guo Q, Zhang X, Ren D, Lv T, Xu X (2017) MicroRNA-21 regulates osteogenic differentiation of periodontal ligament stem cells by targeting Smad5. Sci Rep 7:16608. https://doi.org/10.1038/s41598-017-16720-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu Y, Qin W, Guo D, Liu J, Zhang M, Jin Z (2019) LncRNA-TWIST1 promoted osteogenic differentiation Bboth in PPDLSCs and in HPDLSCs by inhibiting TWIST1 expression. Biomed Res Int 2019:8735952. https://doi.org/10.1155/2019/8735952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim HY, Park SY, Choung SY (2018) Enhancing effects of myricetin on the osteogenic differentiation of human periodontal ligament stem cells via BMP-2/Smad and ERK/JNK/p38 mitogen-activated protein kinase signaling pathway. Eur J Pharmacol 834:84–91. https://doi.org/10.1016/j.ejphar.2018.07.012

    Article  CAS  PubMed  Google Scholar 

  5. Zhang LN, Wang XX, Wang Z, Li KY, Xu BH, Zhang J (2019) Berberine improves advanced glycation end productsinduced osteogenic differentiation responses in human periodontal ligament stem cells through the canonical Wnt/betacatenin pathway. Mol Med Rep 19:5440–5452. https://doi.org/10.3892/mmr.2019.10193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McClarren B, Olabisi R (2018) Strain and vibration in mesenchymal stem cells. Int J Biomater 2018:8686794. https://doi.org/10.1155/2018/8686794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Charoenpanich A, Wall ME, Tucker CJ, Andrews DM, Lalush DS, Dirschl DR, Loboa EG (2014) Cyclic tensile strain enhances osteogenesis and angiogenesis in mesenchymal stem cells from osteoporotic donors. Tissue Eng Part A 20:67–78. https://doi.org/10.1089/ten.TEA.2013.0006

    Article  CAS  PubMed  Google Scholar 

  8. Carroll SF, Buckley CT, Kelly DJ (2017) Cyclic tensile strain can play a role in directing both intramembranous and endochondral ossification of mesenchymal Sstem cells. Front Bioeng Biotechnol 5:73. https://doi.org/10.3389/fbioe.2017.00073

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bodle J, Hamouda MS, Cai S, Williams RB, Bernacki SH, Loboa EG (2019) Primary cilia exhibit mechanosensitivity to cyclic tensile strain and lineage-dependent expression in adipose-derived stem cells. Sci Rep 9:8009. https://doi.org/10.1038/s41598-019-43351-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang Y, Wang Y, Tang G (2016) Cyclic tensile strain promotes the osteogenic differentiation of a bone marrow stromal cell and vascular endothelial cell co-culture system. Arch Biochem Biophys 607:37–43. https://doi.org/10.1016/j.abb.2016.08.015

    Article  CAS  PubMed  Google Scholar 

  11. Sun CX, Zhang LK, Feng XX, Zhao ZH (2011) Changes in the expression of Dlx5, Msx2, and Dlx5/Msx2 in hPDLSCs loaded with cyclic tensile stress. Sichuan Da Xue Xue Bao Yi Xue Ban 42:823–826

    CAS  PubMed  Google Scholar 

  12. Liu M, Sun F, Feng Y, Sun X, Li J, Fan Q, Liu M (2019) MicroRNA-132-3p represses Smad5 in MC3T3-E1 osteoblastic cells under cyclic tensile stress. Mol Cell Biochem 458:143–157. https://doi.org/10.1007/s11010-019-03538-3

    Article  CAS  PubMed  Google Scholar 

  13. Li X, Peng B, Zhu X, Wang P, Sun K, Lei X, He H, Tian Y, Mo S, Zhang R, Yang L (2019) MiR-210-3p inhibits osteogenic differentiation and promotes adipogenic differentiation correlated with Wnt signaling in ERalpha-deficient rBMSCs. J Cell Physiol 234:23475–23484. https://doi.org/10.1002/jcp.28916

    Article  CAS  PubMed  Google Scholar 

  14. Valenti MT, Dalle Carbonare L, Mottes M (2018) Role of microRNAs in progenitor cell commitment and osteogenic differentiation in health and disease (review). Int J Mol Med 41:2441–2449. https://doi.org/10.3892/ijmm.2018.3452

    Article  CAS  PubMed  Google Scholar 

  15. Shen H, Lu C, Shi J, Li H, Si J, Shen G (2019) Satb2 expression in Foxc1-promoted osteogenic differentiation of MC3T3-E1 cells is negatively regulated by microRNA-103-3p. Acta Biochim Biophys Sin (Shanghai) 51:588–597. https://doi.org/10.1093/abbs/gmz037

    Article  CAS  Google Scholar 

  16. Gu X, Li M, Jin Y, Liu D, Wei F (2017) Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation. BMC Genet 18:100. https://doi.org/10.1186/s12863-017-0569-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Raimondo S, Urzi O, Conigliaro A, Bosco GL, Parisi S, Carlisi M, Siragusa S, Raimondi L, Luca A, Giavaresi G, Alessandro R (2020) Extracellular vesicle microRNAs contribute to the osteogenic inhibition of mesenchymal stem cells in multiple Mmyeloma. Cancers (Basel). https://doi.org/10.3390/cancers12020449

    Article  Google Scholar 

  18. Liu K, Huang J, Ni J, Song D, Ding M, Wang J, Huang X, Li W (2017) MALAT1 promotes osteosarcoma development by regulation of HMGB1 via miR-142-3p and miR-129-5p. Cell Cycle 16:578–587. https://doi.org/10.1080/15384101.2017.1288324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Suzuki R, Nemoto E, Shimauchi H (2014) Cyclic tensile force up-regulates BMP-2 expression through MAP kinase and COX-2/PGE2 signaling pathways in human periodontal ligament cells. Exp Cell Res 323:232–241. https://doi.org/10.1016/j.yexcr.2014.02.013

    Article  CAS  PubMed  Google Scholar 

  20. Xu Y, Ren C, Zhao X, Wang W, Zhang N (2019) microRNA-132 inhibits osteogenic differentiation of periodontal ligament stem cells via GDF5 and the NF-kappaB signaling pathway. Pathol Res Pract 215:152722. https://doi.org/10.1016/j.prp.2019.152722

    Article  CAS  PubMed  Google Scholar 

  21. Zhou N, Li Q, Lin X, Hu N, Liao JY, Lin LB, Zhao C, Hu ZM, Liang X, Xu W, Chen H, Huang W (2016) BMP2 induces chondrogenic differentiation, osteogenic differentiation and endochondral ossification in stem cells. Cell Tissue Res 366:101–111. https://doi.org/10.1007/s00441-016-2403-0

    Article  CAS  PubMed  Google Scholar 

  22. Li H, Nie B, Du Z, Zhang S, Long T, Yue B (2018) Bacitracin promotes osteogenic differentiation of human bone marrow mesenchymal stem cells by stimulating the bone morphogenetic protein-2/Smad axis. Biomed Pharmacother 103:588–597. https://doi.org/10.1016/j.biopha.2018.04.084

    Article  CAS  PubMed  Google Scholar 

  23. Kato RB, Roy B, De Oliveira FS, Ferraz EP, De Oliveira PT, Kemper AG, Hassan MQ, Rosa AL, Beloti MM (2016) Erratum: Nanotopography Directs Mesenchymal stem cells to osteoblast lineage through regulation of microRNA-SMAD-BMP-2 circuit. J Cell Physiol 231:2548. https://doi.org/10.1002/jcp.25474

    Article  CAS  Google Scholar 

  24. Li L, Han MX, Li S, Xu Y, Wang L (2014) Hypoxia regulates the proliferation and osteogenic differentiation of human periodontal ligament cells under cyclic tensile stress via mitogen-activated protein kinase pathways. J Periodontol 85:498–508. https://doi.org/10.1902/jop.2013.130048

    Article  CAS  PubMed  Google Scholar 

  25. Wang P, Wang Y, Tang W, Wang X, Pang Y, Yang S, Wei Y, Gao H, Wang D, Cao Z (2017) Bone morphogenetic protein-9 enhances osteogenic differentiation of human periodontal ligament stem cells via the JNK pathway. PLoS ONE 12:e0169123. https://doi.org/10.1371/journal.pone.0169123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu N, Prodanov L, te Riet J, Yang F, Walboomers XF, Jansen JA (2013) Regulation of periodontal ligament cell behavior by cyclic mechanical loading and substrate nanotexture. J Periodontol 84:1504–1513. https://doi.org/10.1902/jop.2012.120513

    Article  CAS  PubMed  Google Scholar 

  27. Zhang M, Bian YQ, Tao HM, Yang XF, Mu WD (2018) Simvastatin induces osteogenic differentiation of MSCs via Wnt/beta-catenin pathway to promote fracture healing. Eur Rev Med Pharmacol Sci 22:2896–2905. https://doi.org/10.26355/eurrev_201805_14992

    Article  CAS  PubMed  Google Scholar 

  28. Zhu XX, Yan YW, Chen D, Ai CZ, Lu X, Xu SS, Jiang S, Zhong GS, Chen DB, Jiang YZ (2016) Long non-coding RNA HoxA-AS3 interacts with EZH2 to regulate lineage commitment of mesenchymal stem cells. Oncotarget 7:63561–63570. https://doi.org/10.18632/oncotarget.11538

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ye Y, Du Y, Guo F, Gong C, Yang K, Qin L (2012) Comparative study of the osteogenic differentiation capacity of human bone marrow- and human adipose-derived stem cells under cyclic tensile stretch using quantitative analysis. Int J Mol Med 30:1327–1334. https://doi.org/10.3892/ijmm.2012.1123

    Article  CAS  PubMed  Google Scholar 

  30. Valenti MT, Deiana M, Cheri S, Dotta M, Zamboni F, Gabbiani D, Schena F, Dalle Carbonare L, Mottes M (2019) Physical exercise modulates miR-21-5p, miR-129-5p, miR-378-5p, and miR-188-5p expression in progenitor cells promoting osteogenesis. Cells. https://doi.org/10.3390/cells8070742

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen Y, Huang W, Sun W, Zheng B, Wang C, Luo Z, Wang J, Yan W (2018) LncRNA MALAT1 promotes cancer metastasis in osteosarcoma via activation of the PI3K-Akt signaling pathway. Cell Physiol Biochem 51:1313–1326. https://doi.org/10.1159/000495550

    Article  CAS  PubMed  Google Scholar 

  32. Zhang P, Li J, Song Y, Wang X (2017) MiR-129-5p inhibits proliferation and invasion of chondrosarcoma cells by regulating SOX4/Wnt/beta-catenin signaling pathway. Cell Physiol Biochem 42:242–253. https://doi.org/10.1159/000477323

    Article  CAS  PubMed  Google Scholar 

  33. Shi ZL, Zhang H, Fan ZY, Ma W, Song YZ, Li M, Li TQ, Cao SX, Feng GJ (2020) Long noncoding RNA LINC00314 facilitates osteogenic differentiation of adipose-derived stem cells through the hsa-miR-129-5p/GRM5 axis via the Wnt signaling pathway. Stem Cell Res Ther 11:240. https://doi.org/10.1186/s13287-020-01754-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liou SF, Hsu JH, Chu HC, Lin HH, Chen IJ, Yeh JL (2015) KMUP-1 Promotes osteoblast differentiation through cAMP and cGMP pathways and signaling of BMP-2/Smad1/5/8 and Wnt/beta-catenin. J Cell Physiol 230:2038–2048. https://doi.org/10.1002/jcp.24904

    Article  CAS  PubMed  Google Scholar 

  35. Li Z, Wang W, Xu H, Ning Y, Fang W, Liao W, Zou J, Yang Y, Shao N (2017) Effects of altered CXCL12/CXCR4 axis on BMP2/Smad/Runx2/Osterix axis and osteogenic gene expressions during osteogenic differentiation of MSCs. Am J Transl Res 9:1680–1693

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang M, Li J, Ye Y, He S, Song J (2020) SHED-derived conditioned exosomes enhance the osteogenic differentiation of PDLSCs via Wnt and BMP signaling in vitro. Differentiation 111:1–11. https://doi.org/10.1016/j.diff.2019.10.003

    Article  CAS  PubMed  Google Scholar 

  37. Yang W, Sun P (2019) Downregulation of microRNA-129-5p increases the risk of intervertebral disc degeneration by promoting the apoptosis of nucleus pulposus cells via targeting BMP2. J Cell Biochem 120:19684–19690. https://doi.org/10.1002/jcb.29274

    Article  CAS  PubMed  Google Scholar 

  38. Liu X, Deng X, Ding R, Cheng X, Jia J (2020) Chondrocyte suppression is mediated by miR-129-5p via GDF11/SMAD3 signaling in developmental dysplasia of the hip. J Orthop Resdoi. https://doi.org/10.1002/jor.24713

    Article  Google Scholar 

  39. Kim KM, Kim DY, Lee DS, Kim JW, Koh JT, Kim EJ, Jang WG (2019) Peroxiredoxin II negatively regulates BMP2-induced osteoblast differentiation and bone formation via PP2A Calpha-mediated Smad1/5/9 dephosphorylation. Exp Mol Med 51:1–11. https://doi.org/10.1038/s12276-019-0263-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (2019A1515110854), National Undergraduate Training Program for Innovation and Entrepreneurship of Sun Yat-sen University funded by Ministry of Education (201901113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiayi Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

This study was approved by the the Ethics Committee of Sun Yat-sen University (ERC-[2016]-46). I certify that the study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed Consent

All participants provided an informed written consent prior to inclusion.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Li, Y., Cao, Z. et al. Mechanism of Cyclic Tensile Stress in Osteogenic Differentiation of Human Periodontal Ligament Stem Cells. Calcif Tissue Int 108, 640–653 (2021). https://doi.org/10.1007/s00223-020-00789-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-020-00789-x

Keywords

Navigation