Skip to main content
Log in

On the Estimation of the Distribution Function of a Finite Population Under High Entropy Sampling Designs, with Applications

  • Published:
Sankhya B Aims and scope Submit manuscript

Abstract

The estimation of the distribution function of a population is an important problem in sampling finite populations. The existing literature focuses on the problem of estimating the population distribution function (p.f.d.) at a single point, or at a finite number of points. In this paper the main interest consists in estimating the whole p.d.f.. In many respects, the starting point is close to classical nonparametric statistics, although the approach to inference is based on sampling design. It is shown here that the Hájek estimator of the p.d.f., if properly centered and scaled, converges weakly to a Gaussian process with covariance kernel proportional to that of a Brownian bridge. The proportionality factor essentially depends on the sample design. Applications to (i) construction of a confidence band for the p.d.f., (i i) comparison of the p.d.f.s of two populations, and (i i i) testing for independence of two characters are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BERGER, Y.G. (1998a). Rate of convergence to asymptotic variance for the Horvitz-Thompson estimator. Journal of Statistical Planning and Inference 74, 149–168.

    Article  MATH  MathSciNet  Google Scholar 

  • BERGER, Y.G. (1998b). Rate of convergence to normal distribution for the Horvitz-Thompson estimator. Journal of Statistical Planning and Inference 67, 209–226.

    Article  MATH  MathSciNet  Google Scholar 

  • BERGER, Y.G. (2005). Variance estimation with Chao’s sampling scheme. Journal of Statistical Planning and Inference 127, 253–277.

    Article  MATH  MathSciNet  Google Scholar 

  • BERGER, Y.G. (2011). Asymptotic consistency under large entropy sampling designs with unequal probabilities. Pakistan Journal of Statistics 27, 407–426.

    MathSciNet  Google Scholar 

  • BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.

    MATH  Google Scholar 

  • BREWER, K.R.W. and DONADIO, M.E. (2003). The high entropy variance of the Horvitz-Thompson estimator. Survey Methodology 29, 189–196.

    Google Scholar 

  • CASSEL, C., SÄRNDAL, C., and WRETMAN J.H. (1977). Foundations of Inference in Survey Sampling. Wiley, New York.

    MATH  Google Scholar 

  • CHEN, J. and WU, C. (2002). Estimation of distribution function and quantiles using the model-calibrated pseudo empirical likelihood method. Statistica Sinica 12, 1223–1239.

    MATH  MathSciNet  Google Scholar 

  • CIFARELLI, D.M., CONTI, P.L., and REGAZZINI, E. (1996). On the asymptotic distribution of a general measure of monotone dependence. The Annals of Statistics 24, 1386–1399.

    Article  MATH  MathSciNet  Google Scholar 

  • CONTI, P.L. (1994). Asymptotic inference on a general measure of monotone dependence. Journal of the Italian Statistical Society 3, 213–241.

    Article  MATH  Google Scholar 

  • FRANCISCO, C.A. and FULLER W.A. (1991). Quantile estimation with a complex survey design. The Annals of Statistics 19, 454–469.

    Article  MATH  MathSciNet  Google Scholar 

  • GENEST, C., NES̆LEHOVÁ, J., and GHORBAL, N.B. (2010). Spearman’s footrule and Gini’s gamma: a review with complements. Journal of Nonparametric Statistics 22, 937–954.

    Article  MATH  MathSciNet  Google Scholar 

  • GRAFSTRÖM, A. (2010). Entropy of unequal probability sampling designs. Statistical Mathodology 7, 84–97.

    Article  MATH  Google Scholar 

  • HÁJEK, J. (1964). Asymptotic theory of rejective sampling with varying probabilities from a finite population. The Annals of Mathematical Statistics 35, 1491–1523.

    Article  MATH  Google Scholar 

  • HÁJEK J. (1981). Sampling from a finite population. Marcel Dekker, New York.

    MATH  Google Scholar 

  • HÁJEK, J., S̆IDÁK, A., and SEN, P.K. (1999). Theory of Rank Tests, 2nd Ed. Academic Press, New York.

    MATH  Google Scholar 

  • ISAKI, C.T. and FULLER, W.A. (1982). Survey design under the regression superpopulation model. Journal of the American Statistical Association 77, 89–96.

    Article  MATH  MathSciNet  Google Scholar 

  • KRAFT, C. (1955). Some conditions for consistency and uniform consistency of statistical procedures. University of California Publications in Statistics 2, 125–142.

    MathSciNet  Google Scholar 

  • KUK, A.Y.C. (1988). Estimation of distribution functions and medians under sampling with unequal probabilities. Biometrika 75, 97–103.

    Article  MATH  MathSciNet  Google Scholar 

  • PINSKER, M.S. (1964). Information and Information Stability for Random Variables and Processes. Holden Day, San Francisco.

    Google Scholar 

  • PRÁS̆KOVÁ, Z. and SEN, P.K. (2009). Asymptotics in finite population sampling. In: Handbook of Statistics 29B - Sample Surveys: Inference and Analysis (Eds. D. Pfeffermann and C.R. Rao). Elsevier, Holland.

    Google Scholar 

  • RAO, J.N.K., KOVAR, J.G., and MANTEL, H.J. (1990). On estimating distribution functions and quantiles from survey data using auxiliary information. Biometrika 77, 365–375.

    Article  MATH  MathSciNet  Google Scholar 

  • ROSÉN, B. (1964). Limit theorems for sampling from finite populations. Arkiv För Matematik 5, 383–424.

    Article  Google Scholar 

  • RUEDA, M., MARTINEZ, S., MARTINEZ, H., and ARCOS A. (2007). Estimation of the distribution function with calibration methods. Journal of Statistical Planning and Inference 137, 435–448.

    Article  MATH  MathSciNet  Google Scholar 

  • SÄRNDAL, C.-E., SWENSSON, B., and WRETMAN, J. (1992). Model Assisted Survey Sampling. Springer, New York.

    Book  MATH  Google Scholar 

  • SEN, P.K. (1972). Finite population sampling and weak convergence to a Brownian bridge. Sankhya A 5, 383–424.

    Google Scholar 

  • SEN, P.K. (1995). The Hájek asymptotics for finite population sampling and their ramifications. Kybernetika 34, 251–268.

    Google Scholar 

  • SERFLING, R.J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.

    Book  MATH  Google Scholar 

  • SHAO, J. (1994). L-statistics in complex survey problems. The Annals of Statistics 22, 946–967.

    Article  MATH  MathSciNet  Google Scholar 

  • TILLÉ, Y. (2006). Sampling Algorithms. Springer, New York.

    MATH  Google Scholar 

  • VÍŠEK, J.A. (1979). Asymptotic distribution of simple estimate for rejective, Sampford and successive sampling. In: Contributions to Statistics (Ed. J. Jurec̆ková). Holland, Reidel Publishing Company, p. 263–275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Luigi Conti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conti, P.L. On the Estimation of the Distribution Function of a Finite Population Under High Entropy Sampling Designs, with Applications. Sankhya B 76, 234–259 (2014). https://doi.org/10.1007/s13571-014-0083-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13571-014-0083-x

Keywords and phrases

AMS (2000) subject classifications

Navigation