Skip to main content
Log in

Transient expression of the homogentisate phytyltransferase gene from Clitoria ternatea causes metabolic enhancement of α-tocopherol biosynthesis and chlorophyll degradation in tomato leaves

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Homogentisate prenyltransferase (HPT) is an important enzyme involved in the α-tocopherol (vitamin E) biosynthetic pathway of all plant taxa. Tocopherol biosynthesis and chlorophyll degradation are related, but more information is needed to explain their relationship. In this study, a candidate gene for HPT from Clitoria ternatea (CtHPT) was isolated and identified via a phylogeny-based approach, and its hypothetical protein sequence was analyzed. Transient expression of CtHPT with Agrobacterium-mediated infiltration into tomato leaves was then performed and observed for the metabolic relationship between the α-tocopherol biosynthesis and chlorophyll degradation by gas chromatography–mass spectrometry. In silico analysis showed that CtHPT contained a chloroplast signal peptide and nine-transmembrane α-helixes. The results showed that, the content of α-tocopherol increased in transient expression of CtHPT, with the increased pool sizes of its biosynthetic intermediates: 2-methyl-6-phythylbenzoquinol and 2,3-dimethyl-5-phythylbenzoquinol, and the increased levels of phytol and various fatty acids. Moreover, the CtHPT transient expression was observed to cause chlorophyll deficiency in the tomato leaves with simultaneous increase of phytol and fatty acids, presumably the degradative products of chlorophyll and chloroplast membranes, respectively. It was concluded that the overexpression of CtHPT may enhance the metabolic flow of the α-tocopherol biosynthetic pathway, causing the degradation of chlorophylls, thereby increasing the supply of the precursor phytol for the α-tocopherol biosynthetic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

HGA:

Homogentisic acid

PDP:

Phytyl diphosphate

DMPBQ:

2,3-dimethyl-5-phythylbenzoquinol

MPBQ:

2-methyl-6-phytyl-1,4-benzoquinol

HPT:

Homogentisate phytyltransferase

GC–MS:

Gas chromatography–mass spectrometry

References

  • Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U, Voll LM (2007) Specific roles of alpha- and gamma-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol 143:1720–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asensi Fabado MA, Munné Bosch S (2010) Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant Sci 15:582–592

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Collakova E, DellaPenna D (2003a) Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol 131:632–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collakova E, DellaPenna D (2003b) The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiol 133:930–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowell EF, McGrath JM, Douches DS (2008) Accumulation of vitamin E in potato (Solanum tuberosum) tubers. Transgenic Res 17:205–217

    Article  CAS  PubMed  Google Scholar 

  • DellaPenna D (2005) A decade of progress in understanding vitamin E synthesis in plants. J Plant Physiol 162:729–737

    Article  CAS  PubMed  Google Scholar 

  • Falk J, Munne-Bosch S (2010) Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 61:1549–1566

    Article  CAS  PubMed  Google Scholar 

  • Harish MC, Dachinamoorthy P, Balamurugan S, Bala Murugan S, Sathishkumar R (2013a) Enhancement of α-tocopherol content through transgenic and cell suspension culture systems in tobacco. Acta Physiol Plant 35:1121–1130

    Article  CAS  Google Scholar 

  • Harish MC, Dachinamoorthy P, Balamurugan S, Bala Murugan S, Sathishkumar R (2013b) Overexpression of homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC) enhances α-tocopherol content in transgenic tobacco. Biol Plant 57:395–400

    Article  CAS  Google Scholar 

  • Huang H, Levin EJ, Liu S, Bai Y, Lockless SW, Zhou M (2014) Structure of a membrane-embedded prenyltransferase homologous to UBIAD1. PLoS Biol 12:e1001911

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain N, Irshad F, Jabeen Z, Shamsi IH, Li Z, Jiang L (2013) Biosynthesis, structural, and functional attributes of tocopherols in planta; past, present, and future perspectives. J Agr Food Chem 61:6137–6149

    Article  CAS  Google Scholar 

  • Ischebeck T, Zbierzak AM, Kanwischer M, Dormann P (2006) A salvage pathway for phytol metabolism in Arabidopsis. J Biol Chem 281:2470–2477

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, DellaPenna D (2008) Tocopherol metabolism, oxidation and recycling under high light stress in Arabidopsis. Plant J 55:607–618

    Article  CAS  PubMed  Google Scholar 

  • Koeun L, Sa Mi L, Sang-Ryoung P, Jinwook J, Joon-Kwan M, Jong-Joo C, Minkyun K (2007) Overexpression of Arabidopsis homogentisate phytyltransferase or tocopherol cyclase elevates vitamin E content by increasing γ-tocopherol level in lettuce (Lactuca sativa L.). Mol Cells 24:301–306

    Google Scholar 

  • Lee K, Lee SM, Park SR, Jung J, Moon JK, Cheong JJ, Kim M (2007) Overexpression of Arabidopsis homogentisate phytyltransferase or tocopherol cyclase elevates vitamin E content by increasing gamma-tocopherol level in lettuce (Lactuca sativa L.). Mol Cells 24:301–306

    CAS  PubMed  Google Scholar 

  • Lima GPP, Machado TM, Oliveira LMd, Borges LdS, Pedrosa VdA, Vanzani P, Vianello F (2014) Ozonated water and chlorine effects on the antioxidant properties of organic and conventional broccoli during postharvest. Scientia Agricola 71:151–156

    Article  CAS  Google Scholar 

  • Mangano S, Gonzalez CD, Petruccelli S (2014) Agrobacterium tumefaciens-mediated transient transformation of Arabidopsis thaliana leaves. Methods Mol Biol 1062:165–173

    Article  PubMed  Google Scholar 

  • Melzer M, Heide L (1994) Characterization of polyprenyldiphosphate: 4-hydroxybenzoate polyprenyltransferase from Escherichia coli. Biochim Biophy Acta 1212:93–102

    Article  CAS  Google Scholar 

  • Mene-Saffrane L, DellaPenna D (2010) Biosynthesis, regulation and functions of tocochromanols in plants. Plant Physiol Bioch 48:301–309

    Article  CAS  Google Scholar 

  • Poincelot RP (1976) Lipid and fatty acid composition of chloroplast envelope membranes from species with differing net photosynthesis. Plant Physiol 58:595–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyka A, Nabiałkowska D, Bober K, Dołowy M (2011) Comparison of NP-TLC and RP-TLC with densitometry to quantitative analysis of tocopherol acetate in pharmaceutical preparation. J Liq Chromatogr Relat Technol 34:2548–2564

    Article  CAS  Google Scholar 

  • Ren W, Zhao L, Zhang L, Wang Y, Cui L, Tang Y, Sun X, Tang K (2011) Molecular analysis of a homogentisate phytyltransferase gene from Lactuca sativa L. Mol Biol Rep 38:1813–1819

    Article  CAS  PubMed  Google Scholar 

  • Rise M, Cojocaru M, Gottlieb HE, Goldschmidt EE (1989) Accumulation of α-tocopherol in senescing organs as related to chlorophyll degradation. Plant Physiol 89:1028–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattler SE, Mene-Saffrane L, Farmer EE, Krischke M, Mueller MJ, DellaPenna D (2006) Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants. Plant cell 18:3706–3720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savidge B, Weiss JD, Wong YH, Lassner MW, Mitsky TA, Shewmaker CK, Post-Beittenmiller D, Valentin HE (2002) Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 129:321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schledz M, Seidler A, Beyer P, Neuhaus G (2001) A novel phytyltransferase from Synechocystis sp. PCC 6803 involved in tocopherol biosynthesis. FEBS Lett 499:15–20

    Article  CAS  PubMed  Google Scholar 

  • Seo YS, Kim SJ, Harn CH, Kim WT (2011) Ectopic expression of apple fruit homogentisate phytyltransferase gene (MdHPT1) increases tocopherol in transgenic tomato (Solanum lycopersicum cv. Micro-Tom) leaves and fruits. Phytochemistry 72:321–329

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatesh TV, Karunanandaa B, Free DL, Rottnek JM, Baszis SR, Valentin HE (2006) Identification and characterization of an Arabidopsis homogentisate phytyltransferase paralog. Planta 223:1134–1144

    Article  CAS  PubMed  Google Scholar 

  • Whitaker BD (1986) Fatty-acid composition of polar lipids in fruit and leaf chloroplasts of “16:3”- and “18:3”-plant species. Planta 169:313–319

    Article  CAS  PubMed  Google Scholar 

  • Wilmoth GC (2002) Tocopherol (vitamin E) content in invasive browse species on underutilized Appalachian farmland. Virginia Tech

Download references

Acknowledgements

We would also like to thanks Professor Tsuyoshi Nakagawa for supporting pGWB6 vector in transient expression experiment. We would also like to thank the 90th Anniversary of Chulalongkorn University Fund for providing a scholarship. This work was supported financially by Chulalongkorn University and the Office of Higher Education Commission.

Author information

Authors and Affiliations

Authors

Contributions

TW, SV and WD (as PI) designed experiments; TW performed most experiments and collected data; TW, SV and WD analyzed data; SV introduced the method of plant transient expression experiments; TW and WD wrote the manuscript.

Corresponding author

Correspondence to Wanchai De-Eknamkul.

Ethics declarations

Conflicts of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wunnakup, T., Vimolmangkang, S. & De-Eknamkul, W. Transient expression of the homogentisate phytyltransferase gene from Clitoria ternatea causes metabolic enhancement of α-tocopherol biosynthesis and chlorophyll degradation in tomato leaves. J. Plant Biochem. Biotechnol. 27, 55–67 (2018). https://doi.org/10.1007/s13562-017-0415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-017-0415-9

Keywords

Navigation