Skip to main content
Log in

Selection and genetic transformation of a fast-growing cell line in cotton (Gossypium hirsutum) for transgene expression studies

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A cell line, named CCL-1 has been obtained in cotton which proliferates on phytohormone free MS medium containing high KNO3. This cell line can be maintained as a friable callus on solidified medium and also readily converted to cell suspensions and maintained in liquid medium. CCL-1 cell suspensions were transformed using a disarmed Agrobacterium strain with binary vectors containing selectable marker genes- nptII, hptII, bar and ALS dm to check the efficacy of these marker genes for selecting transformed cell lines. Transformation was monitored by reporter genes, either GUS or GFP. Transformed cell lines could be readily obtained with all the marker genes, hpt being the most efficient marker for unambiguous selection in 10 day time period. Transformed cell lines showed expression of the reporter genes. We developed a protocol for using these cell lines for insect feeding bioassays by using control CCL-1 and a transformed derivative line containing the cry1Ac gene. The most optimal feeding method is to mix lyophilized transformed cells with an artificial diet to achieve various concentrations of the toxin. The most useful selectable markers for insect feeding bioassay studies are bar and ALS dm as these do not interfere with insect growth. CCL-1 will be a convenient tool for studying transgene expression in cotton and will be particularly useful for testing a large number of genes for antifeedant/ insecticidal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GUS:

β-Glucuronidase

hpt :

Hygromycin phosphotransferase

nptII :

Neomycin phosphotransferase

bar :

phosphinothricin acetyl transferase

Als :

Acetolactate synthase

MS medium:

Murashige and Skoog medium

References

  • Adang MJ, Staver MJ, Rocheleau TA, Leighton J, Barker RF, Thompson DV (1985) Characterized full length and truncated plasmid clones of the crystal protein of Bacillus thuringiensis subsp. Kurstaki HD-73 and their toxicity to Manduca sexta. Gene 36:289–300

    Article  CAS  PubMed  Google Scholar 

  • Avilla C, Vargas-Osuna E, Gonzalez-Cabrera J, Ferre J, Gonzalez-Zamora JE (2005) Toxicity of several δ-endotoxins of Bacillus thuringiensis against Helicoverpa armigera (Lepidoptera: Noctuidae) from Spain. J Invertebr Pathol 90:51–54

    Article  CAS  PubMed  Google Scholar 

  • Babu BG, Udayasuriyan V, Mariam MA, Sivakumar NC, Bharathi M, Balasubramanian G (2002) Comparative toxicity of Cry1Ac and Cry2Aa δ-endotoxins of Bacillus thuringiensis against Helicoverpa armigera (H.). Crop Prot 21:817–822

    Article  Google Scholar 

  • Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031

    Article  CAS  PubMed  Google Scholar 

  • Bayley C, Trolinder N, Ray C, Morgan M, Quisenberry JE, Ow DW (1992) Engineering 2,4-D resistance into cotton. Theor Appl Genet 83:645–649

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti SK, Mandaokar A, Kumar PA, Sharma RP (1998) Efficacy of lepidopteran specific δ-endotoxins of Bacillus thuringiensis against Helicoverpa armigera. J Invertebr Pathol 72:336–337

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary B, Kumar S, Prasad KV, Oinam GS, Burma PK, Pental D (2003) Slow desiccation leads to high-frequency shoot recovery from transformed somatic embryos of cotton (Gossypium hirsutum L. cv. Coker 310 FR). Plant Cell Rep 21:955–960

    Article  CAS  PubMed  Google Scholar 

  • David KM, Perrot-Rechenmann C (2001) Characterization of a tobacco BY2 cell line expressing the tetracycline repressor at a high level for strict regulation of transgene expression. Plant Physiol 125:1548–1553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davidonis GH, Hamilton RH (1983) Plant regeneration from callus tissue of Gossypium hirsutum L. Plant Sci Lett 32:89–93

    Article  CAS  Google Scholar 

  • Finer JJ, McMullen MD (1990) Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep 8:586–589

    Article  CAS  PubMed  Google Scholar 

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci U S A 80:4803–4807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta GP, Birah A, Rani S (2004) Development of artificial diet for mass rearing of American bollworm, Helicoverpa armigera. Indian J Agric Sci 74:548–551

    Google Scholar 

  • Hale JE (2013) Advantageous uses of mass spectrometry for the quantification of proteins. Int J Proteomics. doi:10.1155/2013/219452

    PubMed Central  PubMed  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  CAS  PubMed  Google Scholar 

  • James C (2013) Global status of commercialized biotech/GM crops: ISAAA briefs No. 46. ISAAA. ISAAA, Ithaca

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jin S, Zhang X, Liang S, Nie Y, Guo X, Huang C (2005) Factors affecting transformation efficiency of embryogenic callus of Upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 81:229–237

    Article  CAS  Google Scholar 

  • Ke L, Liu R, Chu B, Yu X, Sun J, Jones B, Pan G, Cheng X, Wang H, Zhu S, Sun Y (2012) Cell suspension culture-mediated incorporation of the rice bel gene into transgenic cotton. PLoS One 7(7):e39974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khan T, Reddy VS, Leelavathi S (2010) High-frequency regeneration via somatic embryogenesis of an elite recalcitrant cotton genotype (Gossypium hirsutum L.) and efficient Agrobacterium-mediated transformation. Plant Cell Tissue Organ Cult 101:323–330

    Article  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric gene carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  • Kumar M, Shukla AK, Singh H, Tuli R (2009) Development of insect resistant transgenic cotton lines expressing cry1EC gene from an insect bite and wound inducible promoter. J Biotechnol 140:143–148

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Birah A, Chaudhary B, Burma PK, Gupta GP, Pental D (2005) Plant codon optimized cry genes of Bacillus thuringiensis can be expressed as soluble proteins in Escherichia coli BL21 codon plus strain as NusA-Cry proten fusion. J Invertebr Pathol 88:83–86

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Sharma P, Pental D (1998) A genetic approach to in vitro regeneration of non-regenerating cotton (Gossypium hirsutum L.) cultivars. Plant Cell Rep 18:59–63

    Article  CAS  Google Scholar 

  • Lyon BR, Cousins YL, Llewellyn DJ, Dennis ES (1993) Cotton plants transformed with a bacterial degradation gene are protected from accidental spray drift damage by the herbicide 2,4-dichlorophenoxyacetic acid. Transgenic Res 2:162–169

    Article  CAS  Google Scholar 

  • Miao W, Wang X, Li M, Song C, Wang Y, Hu D, Wang J (2010) Genetic transformation of cotton with a hairpin-encoding gene hpa Xoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC Plant Biol 10:67

    Article  PubMed Central  PubMed  Google Scholar 

  • Mishra R, Wang HY, Yadav NR, Wilkins TA (2003) Development of highly regenerable elite Acala cotton (Gossypium hirsutum cv. Maxxa)- a step towards genotype-independent regeneration. Plant Cell Tissue Organ Cult 73:21–35

    Article  CAS  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect resistant cotton plants. Nat Biotechnol 8:939–943

    Article  CAS  Google Scholar 

  • Rajasekaran K (2013) Biolistic transformation of cotton embryogenic cell suspension cultures. Methods Mol Biol 958:59–70

    Article  CAS  PubMed  Google Scholar 

  • Steintz B, Gafni Y, Cohen Y, Diaz JP, Tabib Y, Levski S, Navos A (2002) Insecticidal activity of a Cry1A(C) transgene in callus derived from regenerated-recalcitrant cotton (Gossypium hirsutum L.). In Vitro Cell Dev Biol 38:247–251

    Article  Google Scholar 

  • Sunilkumar G, Rathore KS (2001) Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration. Mol Breed 8:37–52

    Article  CAS  Google Scholar 

  • Thomas JC, Adams DG, Keppenne VD, Wasmann CC, Brown JK, Kanost MR, Bohnert HJ (1995) Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant Cell Rep 14:758–762

    Article  CAS  PubMed  Google Scholar 

  • XLSTAT (2013) Addinsoft™ Version 2013.3.03. Available online: http://www.xlstat.com

  • Zhang B (2013) Transgenic cotton: from biotransformation methods to agricultural application. Methods Mol Biol 958:3–15

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Wu SJ (2012) Enhanced Agrobacterium-mediated transformation of embryogenic calli of upland cotton. Methods Mol Biol 847:245–253

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

DP acknowledges support of DST through a J. C. Bose fellowship. We thank Satish Kumar Yadava for his support with statistical analysis, Kumar Paritosh for help with reporter gene assays, Vinee Khanna for hpt::cry1Ac construct and Umakant for his help in insect feeding bioassays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Pental.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

In vitro culture scheme used for the development of cell line CCL-1 (PPT 117 kb)

Supplementary Fig. 2

Growth of the CCL-1 cell line in liquid medium measured by increase in fresh weight of the suspension at different time intervals (PPT 102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A.K., Pental, D. Selection and genetic transformation of a fast-growing cell line in cotton (Gossypium hirsutum) for transgene expression studies. J. Plant Biochem. Biotechnol. 24, 225–232 (2015). https://doi.org/10.1007/s13562-014-0262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-014-0262-x

Keywords

Navigation