Skip to main content

Advertisement

Log in

Double stranded RNA expression and its topical application for non-transgenic resistance to plant viruses

  • Review Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The discovery of RNA silencing has heralded a new phase in the understanding of nucleic acid metabolism and has provided researchers with alternative methods to define the biochemical, developmental and self-protection pathways in plants. Manipulation of these pathways to ultimately modify, induce or enhance favorable traits and repress or completely eliminate unfavorable qualities including disease susceptibility can be achieved by insertion or infiltration of transgenes encoding appropriate effectors. Remarkably, in contrast to transgene derived viral resistance, the RNA silencing mechanism can be readily induced by the topical application of dsRNA effector molecules. The current review summarises the various dsRNA production systems available for producing the large amounts of dsRNA required for topical application onto field grown crops. Also discussed are several investigations utilising a topical application of exogenous, sequence-specific dsRNA to induce the RNA silencing mechanism for viral resistance in plants. Currently, there are limitations for the spray-on application of dsRNA for field use. Further research to define a new phase in the non-transgenic delivery of RNA silencing for complete management of plant pathogens is crucial for its commercial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PTGS:

Post transcriptional gene silencing

siRNA:

Small interfering RNA

RISC:

RNA-Induced silencing complex

TEV:

Tobacco etch virus

ssRNA:

Single stranded RNA

PVY:

Potato virus Y

PRSV-W:

Papaya ring spot virus type-W

DdRp:

DNA dependant RNA polymerase

References

  • Aalto AP, Sarin LP, van Dijk AA, Saarma M, Poranen MM, Arumae U, Bamford DH (2007) Large-scale production of dsRNA and siRNA pools for RNA interference utilizing bacteriophage phi 6 RNA-dependent RNA polymerase. RNA 13:422–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Dang Y, Yang Q, Xue Z, Liu Y (2011) RNA interference in fungi: pathways, functions, and applications. Eukaryot Cell 10:1148–1155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dietzgen RG, Mitter N (2006) Transgenic gene silencing strategies for virus control. Australas Plant Pathol 35:605–618

    Article  CAS  Google Scholar 

  • Gan D, Zhang J, Jiang H, Jiang T, Zhu S, Cheng B (2010) Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Rep 29:1261–1268

    Article  CAS  PubMed  Google Scholar 

  • Haq QMI, Ali A, Malathi VG (2010) Engineering resistance against Mungbean yellow mosaic India virus using antisense RNA. Indian J Virol 21:82–85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang L, Jin J, Deighan P, Kiner E, McReynolds L, Lieberman J (2013) Efficient and specific gene knockdown by small interfering RNAs produced in bacteria. Nat Biotechnol 31:350–356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lecellier C-H, Voinnet O (2004) RNA silencing: no mercy for viruses? Immunol Rev 198:285–303

    Article  CAS  PubMed  Google Scholar 

  • Medina-Hernandez D, Rivera-Bustamante R, Tenllado F, Holguin-Pena R (2013) Effects and effectiveness of two RNAi constructs for resistance to pepper golden mosaic virus in Nicotiana benthamiana plants. Viruses 5:2931–2945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  CAS  PubMed  Google Scholar 

  • Simon-Mateo C, Garcia JA (2011) Antiviral strategies in plants based on RNA silencing. Biochim Biophys Acta (BBA) Gene Regul Mech 1809:722–731

    Article  CAS  Google Scholar 

  • Sun Z-N, Song Y-Z, Yin G-H, Zhu C-X, Wen F-J (2010) HpRNAs derived from different regions of the NIb gene have different abilities to protect Tobacco from infection with Potato virus Y. J Phytopathol 158:566–568

    Article  CAS  Google Scholar 

  • Takiff HE, Chen SM, Court DL (1989) Genetic analysis of the rnc operon of Escherichia coli. J Bacteriol 171:2581–2590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamilarasan S, Rajam MV (2013) Engineering crop plants for nematode resistance through host-derived RNA interference. Cell Dev Biol 2:114

    Google Scholar 

  • Tenllado F, Diaz-Ruiz JR (2001) Double-stranded RNA-mediated interference with plant virus infection. J Virol 75:12288–12297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tenllado F, Barajas D, Vargas M, Atencio FA, Gonzalez-Jara P, Diaz-Ruiz JR (2003a) Transient expression of homologous hairpin RNA causes interference with plant virus infection and is overcome by a virus encoded suppressor of gene silencing. Mol Plant Microbe Interact 16:149–158

    Article  CAS  PubMed  Google Scholar 

  • Tenllado F, Martinez-Garcia B, Vargas M, Diaz-Ruiz J (2003b) Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnol 3:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Tenllado F, Llave C, Diaz-Ruiz JR (2004) RNA interference as a new biotechological tool for the control of virus diseases in plants. Virus Res 102:85–96

    Article  CAS  PubMed  Google Scholar 

  • Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263:103–112

    Article  CAS  PubMed  Google Scholar 

  • Wang M-B, Masuta C, Smith NA, Shimura H (2012) RNA silencing and plant viral diseases. Mol Plant-Microbe Interact 25:1275–1285

    Article  CAS  PubMed  Google Scholar 

  • Yin G, Sun Z, Liu N, Zhang L, Song Y, Zhu C, Wen F (2009) Production of double-stranded RNA for interference with TMV infection utilizing a bacterial prokaryotic expression system. Appl Microbiol Biotechnol 84:323–333

    Article  CAS  PubMed  Google Scholar 

  • Yu N, Christiaens O, Liu J, Niu J, Cappelle K, Caccia S, Huvenne H, Smagghe G (2012) Delivery of dsRNA for RNAi in insects: an overview and future dirrections. Insect Sci 00:1–11

    Google Scholar 

  • Zhang Y, Buchholz F, Muyrers JPP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Li H-C, Miao X-X (2013) Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control. Insect Sci 20:15–30

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

NM is the recipient of a Bill and Melinda Gates Foundation Grand Challenges Explorations grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neena Mitter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, K.E., Worrall, E.A. & Mitter, N. Double stranded RNA expression and its topical application for non-transgenic resistance to plant viruses. J. Plant Biochem. Biotechnol. 23, 231–237 (2014). https://doi.org/10.1007/s13562-014-0260-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-014-0260-z

Keywords

Navigation