Skip to main content
Log in

Influence of the Director-Density Coupling on the Orientational Dynamics in the Isotropic Phase of Nematic Liquid Crystals

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The dynamics of how the order parameter \(Q_{\alpha \beta }\) of the nematic-isotropic phase transition relaxes to zero in the isotropic phase is divided into two time scales, one slow and the other fast. The slow time scale is associated to the final portion of the curve G(t), the orientational correlation function, which decays exponentially in accordance with the Landau-de Gennes prediction. The initial portion of the curve G(t), on the other side, exhibits a power-law decay given by \(t^{-\alpha }\), where \(\alpha\) is a temperature-independent exponent. In contrast to the slow dynamics, the fast one is yet barely understood. In this paper, a new approach for the nematodynamics in the isotropic phase is developed in order to include an energetic coupling between mass density gradients and \(Q_{\alpha \beta }\). The important result here is the appearance of a new viscosity parameter \(\zeta '\) that is crucial to derive the power-law behavior of G(t). We also explain why the fast dynamics is strongly coupled with density fluctuations and dominated by large momentum contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Prost, J.R. Lalanne, Phys. Rev. A 8, 2090 (1973)

    Article  ADS  Google Scholar 

  2. G.K.L. Wong, Y.R. Shen, Phys. Rev. Lett. 30, 895 (1973)

    Article  ADS  Google Scholar 

  3. G.K.L. Wong, Y.R. Shen, Phys. Rev. A 10, 1277 (1974)

    Article  ADS  Google Scholar 

  4. T.D. Gierke, W.H. Flygare, J. Chem. Phys. 61, 2231 (1974)

    Article  ADS  Google Scholar 

  5. J.R. Lalanne, Phys. Lett. 51 A, 74 (1975)

  6. E.G. Hanson, Y.R. Shen, G.K.L. Wong, Phys. Rev. A 14, 1281 (1976)

    Article  ADS  Google Scholar 

  7. J.J. Stankus, R. Torre, C.D. Marshall, S.R. Greenfield, A. Sengupta, A. Tokmakoff, M.D. Fayer, Chem. Phys. Lett. 194, 213 (1992)

    Article  ADS  Google Scholar 

  8. J.J. Stankus, R. Torre, M.D. Fayer, J. Phys. Chem. 97, 9478 (1993)

    Article  Google Scholar 

  9. A. Sengupta, M.D. Fayer, J. Chem. Phys. 102, 4193 (1995)

    Article  ADS  Google Scholar 

  10. H. Cang, J. Li, M.D. Fayer, Chem. Phys. Lett. 366, 82 (2002)

    Article  ADS  Google Scholar 

  11. S.D. Gottke, D.D. Brace, H. Cang, B. Bagchi, M.D. Fayer, J. Chem. Phys. 116, 360 (2002)

    Article  ADS  Google Scholar 

  12. S.D. Gottke, H. Cang, B. Bagchi, M.D. Fayer, J. Chem. Phys. 116, 6339 (2002)

    Article  ADS  Google Scholar 

  13. P.P. Jose, B. Bagchi, J. Chem. Phys. 120, 11256 (2004)

    Article  ADS  Google Scholar 

  14. J. Li, I. Wang, M.D. Fayer, J. Phys. Chem. B 109, 6514 (2005)

    Article  Google Scholar 

  15. J. Li, I. Wang, M.D. Fayer, J. Chem. Phys. 124, 044906 (2006)

    Article  ADS  Google Scholar 

  16. K.P. Sokolowsky, M.D. Fayer, J. Phys. Chem. B 117, 15060 (2013)

    Article  Google Scholar 

  17. K.P. Sokolowsky, H.E. Bailey, M.D. Fayer, J. Chem. Phys. 141, 194502 (2014)

    Article  Google Scholar 

  18. K.P. Sokolowsky, H.E. Bailey, M.D. Fayer, J. Phys. Chem. B 118, 7856 (2014)

    Article  Google Scholar 

  19. K.P. Sokolowsky, H.E. Bailey, D.J. Hoffman, H.C. Andersen, M.D. Fayer, J. Phys. Chem. B 120, 7003 (2016)

    Article  Google Scholar 

  20. S. Ravichandran, A. Perera, M. Moreau, B. Bagchi, J. Chem. Phys. 109, 7349 (1998)

    Article  ADS  Google Scholar 

  21. C. Vitoriano, Braz. J. Phys. 50, 24 (2020)

    Article  ADS  Google Scholar 

  22. C. Vitoriano, Braz. J. Phys. 51, 850 (2021)

    Article  ADS  Google Scholar 

  23. C. Vitoriano, Braz. J. Phys. 52, 144 (2022)

    Article  ADS  Google Scholar 

  24. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York, 1993)

    Google Scholar 

  25. J.V. Selinger, M.S. Spector, V.A. Greanya, B.T. Weslowski, D.K. Shenoy, R. Shashidhar, Phys. Rev. E 66, 051708 (2002)

    Article  ADS  Google Scholar 

  26. P. Carlés, J. of Supercritical Fluids 53, 2 (2010)

    Article  Google Scholar 

  27. M.J. Stephen, J.P. Straley, Rev. Mod. Phys. 46, 617 (1974)

    Article  ADS  Google Scholar 

  28. E.F. Gramsbergen, L. Longa, W.H. de Jeu, Phys. Rep. 135, 195 (1986)

    Article  ADS  Google Scholar 

  29. J.J. Binney, N.J. Dowrick, A.J. Fisher, M.E.J. Newman, The Theory of Critical Phenomena: An Introduction to the Renormalization Group (Clarendon Press, Oxford, 1992)

  30. R. Aris, Vectors, Tensors and the Basic Equations of Fluid Mechanics (Dover Publications, 1989)

  31. L. Onsager, Phys. Rev. 37, 405 (1931); 38, 2265

  32. P. Martinoty, F. Kiry, S. Nagai, S. Candau, F. Debeauvais, J. Physique 38, 159 (1977)

    Article  Google Scholar 

  33. C. Vitoriano, Eur. Phys. J. E 40, 48 (2017)

    Article  Google Scholar 

  34. K.F. Herzfeld, F.O. Rice, Phys. Rev. 31, 691 (1928)

    Article  ADS  Google Scholar 

  35. R.J. Dwyer, J. Chem. Phys. 7, 40 (1939)

    Article  ADS  Google Scholar 

  36. L. Tisza, Phys. Rev. 61, 531 (1942)

    Article  ADS  Google Scholar 

  37. S.M. Karim, L. Rosenhead, Rev. Mod. Phys. 24, 108 (1952)

    Article  ADS  Google Scholar 

  38. M. Gad-el-Hak, J. Fluids Eng. 117, 3 (1995)

    Article  Google Scholar 

  39. M.S. Cramer, Phys. Fluids 24, 066102 (2012)

    Article  ADS  Google Scholar 

  40. C. Vitoriano, Braz. J. Phys. 49, 17 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the support of CAPES (Brazilian Agency).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlindo Vitoriano.

Ethics declarations

Conflict of Interest

The author declares that no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitoriano, C. Influence of the Director-Density Coupling on the Orientational Dynamics in the Isotropic Phase of Nematic Liquid Crystals. Braz J Phys 53, 55 (2023). https://doi.org/10.1007/s13538-023-01276-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01276-y

Keywords

Navigation