Skip to main content
Log in

Effect of the Coupling Between Director and Mass Density Fluctuations on the Paranematic–Nematic Transition Temperature: A Mean-field Treatment

  • Statistical
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

It has experimentally verified that the variation of the paranematic–nematic transition temperature follows the relation \(\Delta T_{PN}^{}=m E\) for low electric fields. Values of the coefficient m are found to be positive and negative. Previous work, on the basis of a simple physical model supplemented by dimensional argument, attributed this behavior to the quenching of long-wavelength director fluctuations due to the field. In this paper, we show that the Landau–de Gennes theory predicts \(\Delta T_{PN}^{}\propto E^2\) even when the quenching of director fluctuations is considered. Based on a recent generalization of the Landau–de Gennes theory that incorporates mass density fluctuations, we give a mean-field treatment of the coupling between director and mass density fluctuations and calculate the contribution of this mechanism to the Helmholtz free energy. Interestingly, the expression we obtain for \(\Delta T_{PN}^{}\) is in good quantitative agreement with what is experimentally observed. In particular, it explains why m takes values of both signs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, e.g, D.-K. Yang, S.-T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, Hoboken, NJ, 2006)

  2. W. Helfrich, Phys. Rev. Lett. 24, 201 (1970)

    Article  ADS  Google Scholar 

  3. C.P. Fan, M.J. Stephen, Phys. Rev. Lett. 25, 500 (1970)

    Article  ADS  Google Scholar 

  4. T.W. Stinson III, J.D. Litster, Phys. Rev. Lett. 25, 503 (1970)

    Article  ADS  Google Scholar 

  5. B. Malraison, Y. Poggi, E. Guyon, Phys. Rev. A 21, 1012 (1980)

    Article  ADS  Google Scholar 

  6. I. Lelidis, G. Durand, Phys. Rev. E 48, 3822 (1993)

    Article  ADS  Google Scholar 

  7. I. Lelidis, M. Nobili, G. Durand, Phys. Rev. E 48, 3818 (1993)

    Article  ADS  Google Scholar 

  8. G. Basappa, N.V. Madhusudana, Eur. Phys. J. B 1, 179 (1998)

    Article  ADS  Google Scholar 

  9. S. Dhara, N.V. Madhusudana, Europhys. Lett. 67, 411 (2004a)

    Article  ADS  Google Scholar 

  10. S. Dhara, N.V. Madhusudana, Eur. Phys. J. E 22, 139 (2007)

    Article  Google Scholar 

  11. I. Dozov, E. Paineau, P. Davidson, K. Antonova, C. Baravian, I. Bihannic, L.J. Michot, J. Phys. Chem. B 115, 7751 (2011)

    Article  Google Scholar 

  12. A. AlSunaidi, W.K. den Otter, J.H.R. Clarke, J. Chem. Phys. 138, 154904 (2013)

    Article  ADS  Google Scholar 

  13. O. Francescangeli, F. Vita, F. Fauth, E.T. Samulski, Phys. Rev. Lett. 107, 207801 (2011)

    Article  ADS  Google Scholar 

  14. F. Vita, I.F. Placentino, C. Ferrero, G. Singh, E.T. Samulski, O. Francescangeli, Soft Matter 9, 6475 (2013)

    Article  ADS  Google Scholar 

  15. M. Mrukiewicz, P. Perkowski, R. Mazur, O. Chojnowska, W. Piecek, R. Dabrowski, J. Mol. Liq. 223, 873 (2016)

    Article  Google Scholar 

  16. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York, 1993)

    Google Scholar 

  17. P.G. de Gennes, Phys. Lett. 30A, 454 (1969)

    Article  ADS  Google Scholar 

  18. P.G. de Gennes, Mol. Cryst. Liq. Cryst. 12, 193 (1971)

    Article  Google Scholar 

  19. E.F. Gramsbergen, L. Longa, W.H. de Jeu, Phys. Rep. 135, 195 (1986)

    Article  ADS  Google Scholar 

  20. S. Singh, Phys. Rep. 324, 107 (2000)

    Article  ADS  Google Scholar 

  21. M.J. Stephen, J.P. Straley, Rev. Mod. Phys. 46, 617 (1974)

    Article  ADS  Google Scholar 

  22. J.V. Selinger, M.S. Spector, V.A. Greanya, B.T. Weslowski, D.K. Shenoy, R. Shashidhar, Phys. Rev. E 66, 051708 (2002)

    Article  ADS  Google Scholar 

  23. H. Mailer, K.L. Likins, T.R. Taylor, J.L. Fergason, Appl. Phys. Lett. 18, 105 (1971)

    Article  ADS  Google Scholar 

  24. W. Helfrich, Phys. Rev. Lett. 29, 1583 (1972)

    Article  ADS  Google Scholar 

  25. S. Nagai, K. Iizuka, Jpn. J. Appl. Phys. 13, 189 (1974)

    Article  ADS  Google Scholar 

  26. O. A. Kapustina, Kristallografiya 49, 759 (2004) [Crystallogr. Rep. 49, 680 (2004)]

  27. O. A. Kapustina, Akust. Zh. 54, 219 (2008) [Acoust. Phys. 54, 180 (2008)]

  28. A.P. Malanoski, V.A. Greanya, B.T. Weslowski, M.S. Spector, J.V. Selinger, R. Shashidhar, Phys. Rev. E 69, 021705 (2004)

    Article  ADS  Google Scholar 

  29. V.A. Greanya, M.S. Spector, J.V. Selinger, B.T. Weslowski, R. Shashidhar, J. Appl. Phys. 94, 7571 (2003)

    Article  ADS  Google Scholar 

  30. V.A. Greanya, A.P. Malanoski, B.T. Weslowski, M.S. Spector, J.V. Selinger, Liq. Cryst. 32, 933 (2005)

    Article  Google Scholar 

  31. E. N. Kozhevnikov, Akust. Zh. 51, 795 (2005) [Acoust. Phys. 51, 688 (2005)]

  32. E. N. Kozhevnikov, Akust. Zh. 56, 26 (2010) [Acoust. Phys. 56, 24 (2010)]

  33. C. Sátiro, C. Vitoriano, Phys. Rev. E 84, 041702 (2011)

    Article  ADS  Google Scholar 

  34. C. Sátiro, C. Vitoriano, Phys. Rev. E 86, 011701 (2012)

    Article  ADS  Google Scholar 

  35. C. Vitoriano, C. Sátiro, Phys. Rev. E 86, 061702 (2012)

    Article  ADS  Google Scholar 

  36. C. Vitoriano, Phys. Rev. E 88, 032501 (2013)

    Article  ADS  Google Scholar 

  37. C. Vitoriano, Phys. Rev. E 90, 032502 (2014)

    Article  ADS  Google Scholar 

  38. G. De Matteis, G. Napoli, J. Appl. Math. 73, 882 (2013)

    Google Scholar 

  39. Y.J. Kim, J.S. Patel, Appl. Phys. Lett. 75, 1985 (1999)

    Article  ADS  Google Scholar 

  40. C. Vitoriano, C. Sátiro, Phys. Rev. E 93, 022702 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  41. Song-Tao Ye, Zhi-Dong Zhou, 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). Shijiazhuang, China 2019, 1–5 (2019)

    Google Scholar 

  42. C. Vitoriano, Eur. Phys. J. E 40, 48 (2017)

    Article  Google Scholar 

  43. O. A. Kapustina, Pis’ma Zh. Éksp. Teor. Fiz. 82, 664 (2005) [JETP Lett. 82, 586 (2005)]

  44. O. A. Kapustina, Akust. Zh. 52, 485 (2006) [Acoust. Phys. 52, 413 (2006)]

  45. C. Vitoriano, Braz. J. Phys. 49, 17 (2019)

    Article  ADS  Google Scholar 

  46. C. Vitoriano, Braz. J. Phys. 50, 24 (2020)

    Article  ADS  Google Scholar 

  47. M. A. Anisimov, S. R. Garber, V. S. Esipov, V. M. Mamnitskiĭ, G. I. Ovodov, L. A. Smolenko, E. L. Sorkin, Zh. Eksp. Teor. Fiz. 72, 1983 (1977) [Sov. Phys. JETP 45, 1042 (1977)]

  48. P.K. Mukherjee, J. Chem. Phys. 109, 3701 (1998a)

    Article  ADS  Google Scholar 

  49. P.K. Mukherjee, J. Phys.: Condens. Matter 10, 9191 (1998b)

    ADS  Google Scholar 

  50. A. Ghanadzadeh, M.S. Beevers, J. Mol. Liq. 112, 141 (2004)

    Article  Google Scholar 

  51. See, e.g., J. J. Binney, N. J. Dowrick, A. J. Fisher, M. E. J. Newman, The Theory of Critical Phenomena: An Introduction to the Renormalization Group (Clarendon Press, Oxford, 1992)

  52. S. Dhara, N.V. Madhusudana, Eur. Phys. J. E 13, 401 (2004b)

    Article  Google Scholar 

  53. H.J. Coles, Mol. Cryst. Liq. Cryst. 49, 67 (1978)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the support of CAPES (Brazilian Agency).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlindo Vitoriano.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitoriano, C. Effect of the Coupling Between Director and Mass Density Fluctuations on the Paranematic–Nematic Transition Temperature: A Mean-field Treatment. Braz J Phys 51, 850–858 (2021). https://doi.org/10.1007/s13538-021-00860-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00860-4

Keywords

Navigation