Skip to main content
Log in

Influence of External Periodic Force On Ion Acoustic Waves in a Magnetized Dusty Plasma Through Forced KP Equation and Modified Forced KP Equation

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The propagation properties of ion acoustic waves (IAW) have been studied in magnetized collisional dusty plasmas consisted by cold ions, charged dust and q-nonextensive velocity distributed electrons, in the presence of external periodic force within the framework of Kadomtsev–Petviashvili (KP) equation and modified Kadomtsev–Petviashvili (MKP) equation. The well-known reductive perturbation technique (RPT) has been utilized to derive forced Kadomtsev–Petviashvili (FKP) equation as well as modified forced Kadomtsev–Petviashvili (MFKP) equation from basic governing equation. Approximate analytical solutions for both the equations are explored, and it is found that positive potential compressive solitary wave solution as well as negative potential rarefactive soliton exists for both the models. It is found that external force plays an effective role for discretization of solitary structures in the same direction for FKP models, but the most remarkable fact is that a positive potential soliton of MFKP model is scattered alternatively in different directions under the application of external forces. Effect of several plasma parameters like initial wave velocity (\(\mu\)), force wave frequency (\(\omega\)), nonextensive parameter (q) and the forcing coefficient (\(f_0\)) on the wave propagation is demonstrated elaborately through numerical analysis. Finally, the effect of forcing term in FKP and MFKP models is discussed in a comparative view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Material

No data are used in our article.

Code Availability

MATLAB codes for drawing the graphs are available.

References

  1. L. Tonks, I. Langmuir, Oscillations in Ionized Gases. Phys. Rev. 33, 195 (1929)

    Article  ADS  Google Scholar 

  2. R.W. Revans, The Transmission of Waves Through an Ionized Gas. Phys. Rev. 44, 798 (1933)

    Article  ADS  Google Scholar 

  3. R.Z. Sagdeev, Reviews of Plasma Physics vol 4 ed M A Leontovich (New York: Consultants Bureau) p 23 (1966)

  4. H. Ikezi, R. Taylor, D. Baker, Phys. Rev. Lett. 44, 11 (1970)

    Article  ADS  Google Scholar 

  5. H.R. Miller, P. J. Witter, Active Galactic Nuclei, (Berlin: Springer) p 202 (1987)

  6. A.V. Gurevich, Y. Istomin, Physics of the Pulsar Magnetosphere (Cambridge University Press), Cambridge, 1993)

    Book  Google Scholar 

  7. E. Tandberg-Hansen, A.G. Emslie, The Physics of Solar Flares Cambridge University Press, Cambridge, p. 124 (1988)

  8. M.J. Rees, in The Very Early Universe, edited by G.W. Gibbson, S.W. Hawking, and S. Siklas Cambridge University Press, Cambridge (1983)

  9. N. Zerglaine, K. Aoutou, T.H. Zerguini, Astrophys Space Sci 364, 84 (2019)

    Article  ADS  Google Scholar 

  10. X. Zhong, H. Chen, N. Liu, S. Liu, Pramana - J Phys 86, 885–892 (2016)

    Article  ADS  Google Scholar 

  11. M. Shahmansouri, J. Theo. Appl. Phys. 6(1), F (2012)

  12. A. Kumar, A. Das, P. Kaw, Physics of Plasmas 26 (2019)

  13. A.P. Misraa, C. Bhowmikb, Physics of Plasmas 16 (2009)

  14. D.J. Korteweg, G. de Vries, Phil. Mag. 39 (1895)

  15. A.R. Seadawy, M. Iqbal, D. Lu, Physica A 544, 123560 (2020)

  16. B.B. Kadomtsev, V.I. Petviashvili, Dokl. Akad. Nauk SSSR 192(4), 753–756 (1970)

    Google Scholar 

  17. W.S. Duan, Y.R. Shi, X.R. Hong, Phys. Lett. A 323, 89–94 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Singh, T. Honzawa, Phys. Fluids B 5, 2093 (1993)

    Article  ADS  Google Scholar 

  19. A.R. Seadawy, Eur. Phys. J. Plus 130, 1 (2015)

  20. T.S. Gill, N.S. Saini, H. Kaur, Chaos. Solitons and Fractals 28, 1106 (2006)

    Article  ADS  Google Scholar 

  21. H.R. Pakzad, Chaos Solitons and Fractals 42, 874 (2009)

  22. E.K. El-Shewy, M.I.A. el Maaty, H.G. Abdelwahed, M.A. Elmessary, Astrophys. Space Sci. 332, 179 (2011)

    Article  ADS  Google Scholar 

  23. F. Verheest, M.A. Hellberg, I. Kourakis, Phys. Rev. E 87, 043107 (2013)

  24. G. Khan, Z. Kumail, Y. Khan, I. Ullah, M. Adnan, Contrib. Plasma Phys. 60, 8 (2020)

    Google Scholar 

  25. U. Samanta, A. Saha, P. Chatterjee, Phys. Plasmas 20 (2013)

  26. A.S. Bain, M. Tribeche, T.S. Gill, Phys. Plasmas 18 (2011)

  27. A. Renyi, Acta Math. Acad. Sci. Hung. 6, 285 (1955)

    Article  Google Scholar 

  28. Z. Emami, H.R. Pakzad, Indian J. Phys. 85, 1643 (2011)

    Article  ADS  Google Scholar 

  29. M. Tribeche, L. Djebarni, R. Amour, Phys. Plasmas 17 (2010)

  30. A.H. Salas, Nonlinear Analysis Real World Applications 12, 1314–1320 (2011)

    Article  MathSciNet  Google Scholar 

  31. Z.J. Xiao, G.B. Ling, Commun. Theor. phys. 52, 279 (2009)

    Article  ADS  Google Scholar 

  32. Y. Liu, Y.T. Gao, Z.Y. Sun, Y. Xin, Nonlinear Dyn 66, 575–587 (2011)

    Article  Google Scholar 

  33. M. Li, JH. Xiao, M. Wang, YF. Wang, B. Tian, Z. Naturforsch. 68a, 235–244 (2013)

  34. Y. Xin, Y.T. Gao, Z.Y. Sun, Y. Liu, Nonlinear Dyn 67, 1023–1030 (2012)

    Article  Google Scholar 

  35. H.L. Zhen, B. Tian, D.Y. Liu, L. Liu, Y. Jiang, Journal of Plasma Physics 81, 5 (2015)

    Google Scholar 

  36. A.S. Truitt, C.M. Hartzell, J. Spacecraft Rockets 58(3), 848–855 (2020)

    Article  ADS  Google Scholar 

  37. A.S. Truitt, C.M. Hartzell, J. Spacecraft Rockets 57, 5 (2020)

    Google Scholar 

  38. S. Maitra, G. Banerjee, Phys. Plasmas 21 (2014)

  39. S. Ghosh, J. Plasma Phys. 71, 519 (2005)

    Article  ADS  Google Scholar 

  40. M. Shalaby, S.K. El-Labany, E.F. El-Shamy, M.A. Khaled, Astro. Space Sci. 326, 273 (2010)

    Article  ADS  Google Scholar 

  41. M.R. Gupta, S. Sarkar, S. Ghosh, M. Debnath, M. Khan, Phys. Rev. E 63 (2001)

  42. H. Alinejad, M. Shahmansouri, I.E.E.E. Transac, Plasma Sci. 47, 4378 (2019)

    Article  Google Scholar 

  43. S. Sultana, Phys. Lett. A 382, 1368 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  44. Y. Li, J.X. Ma, J. Li, Plasmas 11, 1366 (2004)

    Article  ADS  Google Scholar 

  45. T. Taniuti, C.C. Wei, J. Phys. Soc. Jpn. 24, 941 (1968)

    Article  ADS  Google Scholar 

  46. T. Taniuti, N. Yajima, J. Math. Phys. 10, 1369 (1969)

    Article  ADS  Google Scholar 

  47. E. Infeld, G. Rowlands, Nonlinear waves, solitons and chaos (Cambridge University Press, Cambridge, 1990)

    MATH  Google Scholar 

  48. A. Jeffrey, T. Kawahara, Asymptotic methods in nonlinear wave theory (Pitman, Boston, 1982)

    MATH  Google Scholar 

  49. M.M. Lin, W.S. Duan, Chaos. Solitons and Fractals 23, 929–937 (2005)

    Article  ADS  Google Scholar 

  50. K.K. Mondal, A. Roy A, P. Chatterjee, S. Raut, Int. J. Appl. Comput. Math 6, 55 (2020)

  51. S. Raut, K.K. Mondal, P. Chatterjee, A. Roy, Pramana - J Phys 95, 73 (2021)

    Article  ADS  Google Scholar 

  52. S.K. El-Labany, W.F. El-Taibany, A. Atteya, Phys. Lett. A 382(6), 412–419 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  53. Y. Jun, Int. J. Nonlinear Sci. Num. Sim. 11(6), 451–456 (2010)

    Google Scholar 

  54. S. Raut, K.K. Mondal, P. Chatterjee, A. Roy, SeMA J 78(4), 571–593 (2021)

    Article  MathSciNet  Google Scholar 

  55. V.S. Aslanov, V.V. Yudintsev, Adv. Space Res. 55, 660–667 (2015)

    Article  ADS  Google Scholar 

  56. A. Sen, S. Tiwari, S. Mishra, P. Kaw, Adv. Space Res. 56(3), 429 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the reviewers for their valuable comments and suggestions which helped us to improve the quality of the paper.

Funding

There is no funding for this research work.

Author information

Authors and Affiliations

Authors

Contributions

The statement of contribution is as follows: Ashim Roy contributed to writing—original draft preparation and methodology. Kajal Kumar Mondal contributed to software and visualization. Prasanta Chatterjee performed conceptualization and investigation. Santanu Raut performed writing—review and editing.

Corresponding author

Correspondence to Santanu Raut.

Ethics declarations

Conflicts of interest

We declare that there is no conflict of interest between the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We consider Equation (29), and differentiating with respect to \(\tau\) we get

$$\begin{aligned} \frac{dI}{d\tau }= & {} \int \limits _{-\infty }^{\infty }2\phi _{1}\frac{ \partial \phi _{1}}{\partial Y }dY \nonumber \\= & {} -\int \limits _{-\infty }^{\infty }\left( 2\phi _{1}\left( Al\phi _{1}+\frac{Cm^{2}}{l}\right) \frac{\partial \phi _{1}}{\partial Y } + Bl^{3}\frac{\partial ^{3}\phi _{1}}{\partial Y ^{3}}\right) dY \;\;(\text {using equation }27)\nonumber \\= & {} -2Al\int \limits _{-\infty }^{\infty }{\phi _{1}}^2 \frac{\partial \phi _{1}}{\partial Y }dY -2\frac{Cm^2}{l}\int \limits _{-\infty }^{\infty }\phi _{1}\frac{\partial \phi _{1}}{\partial Y }dY -Bl^3\int \limits _{-\infty }^{\infty }2\phi _{1} \frac{ \partial ^{3} \phi _{1}}{\partial Y^{3} }dY\nonumber \\= & {} -2AlI_1 - 2\frac{Cm^2}{l} I_2 -Bl^3 I_3. \end{aligned}$$
(59)

Now

$$\begin{aligned} I_1= \int \limits _{-\infty }^{\infty }{\phi _{1}}^2 \frac{\partial \phi _{1}}{\partial Y}dY= \int \limits _{-\infty }^{\infty }{\phi _{1}}^3 d\phi _1 =\left[ \frac{\phi _{1}^{3}}{3}\right] _{-\infty }^{\infty } =0 ~~~~(\text {Assuming }\phi _{1}\rightarrow 0\text { as }Y\rightarrow \pm \infty ) \end{aligned}$$
(60)
$$\begin{aligned} I_2= \int \limits _{-\infty }^{\infty }{\phi _{1}} \frac{\partial \phi _{1}}{\partial Y }dY= \int \limits _{-\infty }^{\infty }{\phi _{1}}^2 d\phi _1 = \left[ \frac{\phi _{1}^{2}}{2}\right] _{-\infty }^{\infty } =0 ~~~~ (\text {Assuming }\phi _{1}\rightarrow 0\text { as }Y\rightarrow \pm \infty ) \end{aligned}$$
(61)
$$\begin{aligned} I_3= & {} 2\int \limits _{-\infty }^{\infty }\phi _{1} \frac{ \partial ^{3} \phi _{1}}{\partial Y^{3} }dY \nonumber \\= & {} 2\left[ \phi _{1}{\frac{\partial ^{2} \phi _{1}}{\partial Y^2}}\right] _{-\infty }^{\infty }-2\int \limits _{-\infty }^{\infty }\frac{\partial \phi _{1}}{\partial Y} \frac{\partial ^{2} \phi _{1}}{\partial Y^2} dY \nonumber \\= & {} 2.0 - \int \limits _{-\infty }^{\infty }d\bigg \{\bigg (\frac{\partial \phi _{1}}{\partial Y}\bigg )^2\bigg \}~~~~ (\text { Assuming the boundary condition }\phi _{1}\rightarrow 0\text { as }Y\rightarrow \pm \infty ) \nonumber \\= & {} -\left[ \bigg ({\frac{\partial \phi _{1}}{\partial Y}}\bigg )^2\right] _{-\infty }^{\infty }\nonumber \\= & {} 0 ~~~~ (\text {Assuming the boundary condition }{\frac{\partial \phi _{1}}{\partial Y}}\rightarrow 0\text { as }Y\rightarrow \pm \infty ) \end{aligned}$$
(62)

Hence Equation (59) shows that Equation (27) remains conserve for modified KdV-type equation. Now consider

$$\begin{aligned} I_4= \int \limits _{-\infty }^{\infty }{\phi _{1}}^3 \frac{\partial \phi _{1}}{\partial Y}dY= \int \limits _{-\infty }^{\infty }{\phi _{1}}^3 d\phi _1 =\left[ \frac{\phi _{1}^{}}{4}\right] _{-\infty }^{\infty } =0 ~~~~(\text {Assuming }\phi _{1}\rightarrow 0\text { as }Y\rightarrow \pm \infty ) \end{aligned}$$
(63)

To prove the conservation property of modified KdV-type equation, we consider again

$$\begin{aligned} \frac{dI}{d\tau }= & {} \int \limits _{-\infty }^{\infty }2\phi _{1}\frac{ \partial \phi _{1}}{\partial Y }dY \nonumber \\= & {} -\int \limits _{-\infty }^{\infty }\left( 2\phi _{1}\left( A_{1}l{\phi _{1}}^2+\frac{C_{1}m^{2}}{l}\right) \frac{\partial \phi _{1}}{\partial Y } + B_{1}l^{3}\frac{\partial ^{3}\phi _{1}}{\partial Y ^{3}}\right) dY ~~~~(\text {using equation }55)\nonumber \\= & {} -2A_{1}l\int \limits _{-\infty }^{\infty }{\phi _{1}}^3 \frac{\partial \phi _{1}}{\partial Y }dY -2\frac{C_{1}m^2}{l}\int \limits _{-\infty }^{\infty }\phi _{1}\frac{\partial \phi _{1}}{\partial Y }dY -B_{1}l^3\int \limits _{-\infty }^{\infty }2\phi _{1} \frac{ \partial ^{3} \phi _{1}}{\partial Y^{3} }dY\nonumber \\= & {} -2A_{1}lI_4 - 2\frac{Cm^2}{l} I_2 -Bl^3 I_3 \nonumber \\= & {} 0. ~~~~(\text {using the values of } I_2, I_3 \text { and }I_4.) \end{aligned}$$
(64)

This also proves that Equation (55) remains conserve for modified KdV-type equation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Mondal, K.K., Chatterjee, P. et al. Influence of External Periodic Force On Ion Acoustic Waves in a Magnetized Dusty Plasma Through Forced KP Equation and Modified Forced KP Equation. Braz J Phys 52, 65 (2022). https://doi.org/10.1007/s13538-021-01038-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-021-01038-8

Keywords

Navigation