Skip to main content
Log in

New All-Optical Realizations of Multiplexer Logic Using Micro-ring Resonators

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper aims to propose two new all-optical configurations to realize the behavior of four inputs-single output (4:1) multiplexer logic. The presented schemes are designed by using micro-ring resonator (MRR)-based all-optical switches. The first proposed configuration is based on a new logic design of multiplexer and employs only eleven MRRs. To get further better system compactness and speed, one more all-optical implementation of 4ː1 multiplexer has been developed employing only seven MRR structures. By using seven MRR-based all-optical realization of 4ː1 multiplexer, an all-optical multifunction reconfigurable logic gate structure has been developed which can be reconfigured optically to perform different logic operations. The switching activity of MRR can be considered as the backbone of the proposed circuits and has been discussed in detail with mathematical explanations and MATLAB simulations. The logical behavior of the presented seven MRR based all-optical multiplexer and the all-optical multifunction reconfigurable logic gate has also been validated by performing MATLAB simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. M.T. Hill, H. de Waardt, G.D. Khoe, H.J.S. Dorrean, All-optical flip-flop based on coupled laser diodes. IEEE I. Quantum Electron. 37(3), 405–413 (2001)

    Article  ADS  Google Scholar 

  2. A.P. Kabilan, X.S. Christina, P.E. Caroline, Photonic crystal based all-optical OR and XO logic gates. International Conference on Computing Communication and Networking Technologies, pp 1–4 (2010)

  3. W. Liu, D. Yang, G. Shen, H. Tian, Y. Ji, Design of ultra compact all-optical XOR, XNOR, NAND and OR gates using photonic crystal multi-mode interference waveguides: Opt. Laser Technol. 50, 55–64 (2013)

    Article  ADS  Google Scholar 

  4. M.A. Jalila, I.S. Amirib, C. Teekac, J. Alib, P.P. Yupapinc, All-optical logic XOR/XNOR gate operation using microring and nanoring resonators. Phys. Exp. 1, 15–22 (2011)

    Google Scholar 

  5. S. Thongmeea, P.P. Yupapinb, All-optical half adder/subtractor using dark-bright soliton conversion control. Procedia Eng. 8, 217–222 (2011)

    Article  Google Scholar 

  6. K. Luangxaysana, P. Phongsanam, S. Mitatha, M. Yoshida, N. Komine, P.P. Yupapin, Novel all-optical flip-flop using dark-bright soliton conversion control. Inf. Technol. J. 11(10), 1470–1476 (2012)

    Article  Google Scholar 

  7. P. Nadimi, D.D. Caviglia, E. Di Zitti, Exploiting silicon-on-insulator microring resonator bistability behavior for all optical set-reset flip-flop. World Acad Sci. Eng. Technol. 71, 648–652 (2012)

    Google Scholar 

  8. S. Ma, Z. Chen, H. Sun, N.K. Dutta, High speed all optical logic gates based on quantum dot semiconductor optical amplifiers. Opt. Exp. 18, 6417–6422 (2010)

    Article  ADS  Google Scholar 

  9. K.E. Zoiros, G. Papadopoulos, T. Houbavlis, G.T. Kanellos, Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac interferometer. Opt. Commun. 258(2), 114–134 (2006)

    Article  ADS  Google Scholar 

  10. M.A. Karim, A.A.S. Awwal, A.K. Cherri, Polarization-encoded optical shadow-casting logic units: design. Appl. Opt. 26(14), 2720–2725 (1987)

    Article  ADS  Google Scholar 

  11. S.K. Raghuwanshi, A. Kumar, S. Kumar, 1X4 Signal router using 3 Mach-Zhender interferometers. Opt. Eng. 52(03), 35002 (2013)

    Article  Google Scholar 

  12. D.K. Gayen, A. Bhattachryya, T. Chattopadhyay, J.N. Roy, Ultrafast all-optical half adder using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer. J. Lightwave Technol. 30(21), 3387–3393 (2012)

    Article  ADS  Google Scholar 

  13. T. Houbavlis, K.E. Zoiros, G. Kanellos, C. Tsekrekos, Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach-Zehnder interferometer. Opt. Commun. 232, 179–199 (2004)

    Article  ADS  Google Scholar 

  14. A. Kumar, S. Kumar, S.K. Raghuwanshi, Implementation of XOR/XNOR and AND logic gates using Mach-Zehnder interferometers. Optik. 125, 5764–5767 (2014)

    Article  ADS  Google Scholar 

  15. A. Kumar, S. Kumar, S.K. Raghuwanshi, Implementation of full adder and full-subtractor based on electro-optic effect in Mach-Zehnder interferometers. Opt. Commun. 324, 93–107 (2014)

    Article  ADS  Google Scholar 

  16. A. Kumar, S.K. Raghuwanshi, Implementation of optical gray code converter and even parity checker using the electro-optic effect in the Mach-Zehnder interferometer structure. Opt. Quant. Electron. 47, 2117–2140 (2015)

    Article  Google Scholar 

  17. S.K. Raghuwanshi, A. Kumar, N.K. Chen, Implementation of sequential logic circuit using the Mach- Zehnder interferometer based on electro-optic effect. Opt. Commun. 333, 978–988 (2014). https://doi.org/10.1016/j.optcom.2014.07.066

    Article  Google Scholar 

  18. C. Taraphdar, T. Chattopadhyay, J.N. Roy, Mach-Zehnder interferometer-based all-optical reversible logic gate. Opt. Laser Technol. 42, 249–259 (2006). https://doi.org/10.1016/j.optlastec.2009.06.017

    Article  ADS  Google Scholar 

  19. A. Kumar, S.K. Raghuwanshi, Implementation of some high speed combinational and sequential logic gates using micro-ring. Optik. 127, 8751–8759 (2016). https://doi.org/10.1016/j.ijleo.2016.06.061

    Article  ADS  Google Scholar 

  20. L. Li, J. Sun, Theoretical investigation of phase-based all-optical NOT, XOR and XNOR logic gates based on AlGaAsmicroring resonators. J. Mod. Opt. 59(9), 809–813 (2012). https://doi.org/10.1080/09500340.2012.700079

    Article  ADS  Google Scholar 

  21. L. Zhang, J. Ding, Y. Tin, R. Ji, L. Yang, H. Chen, P. Zhou, Y. Lu, W. Zhu, R. Min, Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations. Opt. Express 20(11), 11605–11614 (2011). https://doi.org/10.1364/OE.20.011605

    Article  ADS  Google Scholar 

  22. A. Kumar, Application of micro-ring resonator as high speed optical gray code converter. Opt. Quant. Electron. 4, 60 (2016). https://doi.org/10.1007/s11082-016-0737-1

    Article  Google Scholar 

  23. A. Kumar, Implementation of all-optical NAND logic gate and half-adder using the micro-ring resonator structures. Opt. Quant. Electron. 48, 477–489 (2016). https://doi.org/10.1007/s11082-016-0747-z

    Article  Google Scholar 

  24. A. Kumar, Implementation of all-optical active low/high tri state buffer using micro ring resonator. Opt. Quant. Electron. 51, 191–209 (2019). https://doi.org/10.1007/s11082-019-1898-5

    Article  Google Scholar 

  25. P. Shekhar, A. Kumar, A. Ahmad, M. Srivastava, All optical OR/NOR logic gate using the micro-ring resonator based switching activity: 2019 IEEE International Conference on Electrical, Electronics and Computer Engineering (UPCON), pp. 1–4 (2019). https://doi.org/10.1109/UPCON47278.2019.8980176.

  26. Y.-C. Chang, Y.-H. Lin, J.H. Chen, G.-R. Lin, All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry-Perot laser diode at unlasing condition. Opt. Express 12(19), 4449–4456 (2004). https://doi.org/10.1364/OPEX.12.004449

    Article  ADS  Google Scholar 

  27. G.-R. Lin, K.-C. Yu, Y.-C. Chang, 10 Gbit/s All-optical non-return to zero-return to zero data format conversion based on a backward dark-optical comb injected semiconductor optical amplifier. Opt. Lett. 31(10), 1376–1378 (2008). https://doi.org/10.1364/OL.31.001376

    Article  ADS  Google Scholar 

  28. G.-R. Lin, S.-P. Su, C.-L. Wu, Y.-H. Lin, B.-J. Huang, H.-Y. Wang, C.-T. Tsai, C.-I. Wu, Y.-C. Chi, Si-rich SiNx based switch enables optical data conversion up to 12 Gbit/s. Sci. Rep. 5, 9611 (2015). https://doi.org/10.1038/srep09611

    Article  Google Scholar 

  29. C.-L. Wu, Y.-H. Lin, S.-P. Su, B.-J. Huang, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, C.-I. Wu, G.-R. Lin, Enhancing optical nonlinearity in a nonstoichiometric SiN waveguide for cross-wavelength all-optical data processing. ACS Photon. 2(8), 1141–1154 (2015)

    Article  Google Scholar 

  30. C.-L. Wu, S.-P. Su, G.-R. Lin, All-optical modulation based on silicon quantum dot doped SiOx:Si-QD waveguide. Laser Photon. Rev. 8(5), 766–776 (2014)

    Article  ADS  Google Scholar 

  31. S.-H. Syu, C.-H. Cheng, H.-Y. Wang, Fu. Po-Han, Y.-C. Chi, D.-W. Hua, G.-R. Lin, Amplitude/polarization shift keying based logic gate in polarization dependent C-rich SiC ring waveguide. IEEE J. Sel. Top. Quantum Electron. 26(2), 1–9 (2020). https://doi.org/10.1109/JSTQE.2019.2949450

    Article  Google Scholar 

  32. J.N. Roy, A.K. Maiti, S. Mukhopadhyay, Designing of an all-optical time division multiplexing scheme with the help of nonlinear material based tree-net architecture. Chin. Opt. Lett. 4(8), 483–486 (2006)

    ADS  Google Scholar 

  33. Z.-Q. Hui, J.-G. Zhang, Design of polarity-preserved or polarity-inverted wavelength converters using cross-phase modulation in a highly nonlinear photonic crystal fiber with flat dispersion. J. Opt. 14(6), 6540 (2012)

    Article  Google Scholar 

  34. P.I. Kuindersma, X.J.M. Leijtens, J.H.C. Van Zantvoort, H. De Waardt, A dual purpose, all optical multiplexer circuit in InP, for multiplexing clock and NRZ data, and for transmultiplexing WDM to TDM. Opt. Express 20(28), 29577–29589 (2012)

    Article  ADS  Google Scholar 

  35. S.J. Fabbri, S. Sygletos, A. Perentos, E. Pincemin, K. Sugden, A.D. Ellis, Experimental implementation of an all-optical interferometric drop, add, and extract multiplexer for superchannels. J. Lightwave Technol. 33(7), 1351–1357 (2015)

    Article  ADS  Google Scholar 

  36. A.M.J. Koonen, C. Haoshuo, H.P.A. Van Den Boom, O. Raz, Silicon photonic integrated mode multiplexer and demultiplexer. IEEE Photon. Technol. Lett. 24(21), 1961–1964 (2012)

    Article  ADS  Google Scholar 

  37. Q. Xu, R. Soref, Reconfigurable optical directed logic circuits using microresonators based optical switches. Opt. Express 19(6), 5244–5259 (2011)

    Article  ADS  Google Scholar 

  38. J.K. Rakshit, J.N. Roy, All-optical ultrafast switching in a silicon microring resonator and its application to design multiplexer/demultiplexer, adder/subtractor and comparator circuit. OpticaApplicata (2016). https://doi.org/10.5277/oa160402J

    Article  Google Scholar 

  39. G. Grinblat, M.P. Nielsen, P. Dichtl, Y. Li, R.F. Oulton, S.A. Maier, Ultrafast sub–30-fs all-optical switching based on gallium phosphide. Sci. Adv. 5(6), 1–6 (2019). https://doi.org/10.1126/sciadv.aaw3262

    Article  Google Scholar 

  40. A. Godbole, P.P. Dali, V. Janyani, T. Tanabe, G. Singh, All optical scalable logic gates using Si3N4 microring resonators. IEEE J. Sel. Top. Quantum Electron. 22(6), 326–333 (2016). https://doi.org/10.1109/JSTQE.2016.2593278

    Article  ADS  Google Scholar 

  41. A. Saharia, N. Mudgal, A. Agarwal, K.K. Choure, J. Ali, P. Yupapin, R. Maddila, G. Singh, Elementary magnitude comparators and flip-flop using Si3N4 based microring resonator. Optoelectron. Adv. Mater. Rapid Commun. 14, 43–52 (2020)

    Google Scholar 

  42. C.-L. Wu, C.-H. Hseih, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-J. Hung, M.-H. Shih, A.-K. Chu, C.-K. Lee, Tens of GHz Tantalum pentoxide-based micro-ring all-optical modulator for Si photonics. Ann. Phys. 529(3), 6736 (2016). https://doi.org/10.1002/andp.201600358

    Article  Google Scholar 

  43. C.-L. Wu, G.-R. Lin, Y.-J. Chiu, A.-K. Chu, M-H. Shih, C.-K. Lee, All-optical switching in based micro-ring resonator, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 1–1, (2017). https://doi.org/10.1109/CLEOE-EQEC.2017.8086530.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Srivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Srivastava, M. & Srivastava, D.K. New All-Optical Realizations of Multiplexer Logic Using Micro-ring Resonators. Braz J Phys 51, 1698–1718 (2021). https://doi.org/10.1007/s13538-021-00984-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00984-7

Keywords

Navigation