Skip to main content
Log in

Odd–even effect of 7O.m liquid crystal compound series studied under the effect of the electric field by density functional theory (DFT) methods

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The homologous series of the organic compound N(p-n-heptyloxy-benzylidene) p-toluidine (7O.m) expresses the odd–even effect under the influence of an external applied electric field by density functional theory (DFT) methods. The dipole moment, order parameter, and birefringence express an odd–even effect. At the same time, the Homo–Lumo gap and isotropic polarizability do not exhibit any odd–even effect under the influence of an external applied electric field. The Homo–Lumo gap remains constant for the homologous series of 7O.m (m = 1–10). The isotropic polarizability and refractive index continuously increase with an extension of alkyl chain length. The DFT methods (B3LYP and M062X) exhibit the same nature of optical characteristics for all the series but with different values.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. N. Ajeetha, D.M. Potuchi, V.G.K.M. Pisipati, Phase Transit. 78, 369 (2005)

    Google Scholar 

  2. V.G.K.M. Pisipati, A.K. George, C. Srinivasu, P.N. Murty, Z.;jsdj Naturforsch 58a, 103 (2003)

    ADS  Google Scholar 

  3. D.M. Latha, V.G.K.M. Pisipati, P. Pardhasaradhi, P.V.D. Prasad, G.P. Rani, Liq. Cryst. 39, 1113 (2012)

    Google Scholar 

  4. K. Fakruddin, R.J. Kumar, P.V.D. Prasad, V.G.K.M. Pisispati, Mol. Cryst. Liq. Cryst. 511, 146 (2009)

    Google Scholar 

  5. F. Heinemann, P. Zugenmaier, Mol. Cryst. Liq. Cryst. 357, 85 (2001)

    Google Scholar 

  6. H. Haga, C.W. Garland, Liq. Cryst. 23, 645 (1997)

    Google Scholar 

  7. K.N. Singh, B. Gogoi, R. Dubey, N.M. Singh, H.B. Sharma, P.R. Alapati, Mol. Cryst. Liq. Cryst. 626, 130 (2016)

    Google Scholar 

  8. A. Iwan, An overview of liquid crystals based on Schiff based compounds, in Book Liquid Crystalline Organic Compounds and Polymers as Materials XXI Century: From Synthesis to Applications, 1st edn. (Transworld Research Network Trivandrum, Kerala, 2011)

  9. M. Mitra, B. Majumdar, R. Paul, S. Paul, Mol. Cryst. Liq. Cryst. 180(2), 187 (1990)

    Google Scholar 

  10. N.V.S. Rao, P.V.D. Prasad, V.G.K.M. Psispati, Mol. Cryst. Liq. Cryst. 126(2–4), 175 (1985)

    Google Scholar 

  11. J. Collett, L.B. Sorensen, P.S. Pershan, J.D. Litster, R.J. Birgeneau, J. Als-Nielsen, Phys. Rev. Lett. 49, 553 (1982)

    ADS  Google Scholar 

  12. W.H. De Jeu, J.A. De Poorter, Phys. lett. A 61, 114 (1977)

    ADS  Google Scholar 

  13. D.E.M. Zambrano, Temperature Dependent Surface Reconstruction of Freely Suspended Films of 4-n-heptyloxybenzylidene-4-n-heptylaniline (Lawrence University, Appleton, 2015)

    Google Scholar 

  14. V.G.K.M. Pisipati, N.V.S. Rao, Z. Naturforsch 37a, 1262 (1982)

    ADS  Google Scholar 

  15. D.M. Lata, P.V.R. Shekar, V.G.K.M. Pisipati, P. Pardhasaradhi, IJAETMAS 04, 63 (2017)

    Google Scholar 

  16. N. Ajeetha, D.P. Ojha, Z. Naturforsch 64a, 844 (2009)

    ADS  Google Scholar 

  17. R.Y. Dong, K.R. Sridharan, J. Chem. Phys. 82, 4838 (1985)

    ADS  Google Scholar 

  18. V.G.K.M. Pisipati, N.V.S. Rao, Z. Naturforsch 39a, 696 (1984)

    ADS  Google Scholar 

  19. J. Godzwon, M.J. Sienkowska, Z. Galewski, Thermochim. Acta 491, 71 (2009)

    Google Scholar 

  20. J. Thoen, G. Seynhaeve, Mol. Cryst. Liq. Cryst. 127, 229 (1985)

    Google Scholar 

  21. K.R.K. Rao, J.V. Rao, P. Venkatacharyulu, V. Baliah, Phys. Stat. Sol. (A) 93, 93 (1986)

    ADS  Google Scholar 

  22. S.B. Rananavare, V.G.K.M. Pisipati, An overview of liquid crystals based on Schiff base compounds, in Liquid Crystalline Organic Compounds and Polymers as Materials of the XXI Century: From Synthesis to Applications (2011), p. 19–52

  23. P.G. de Gennes, The Physics of Liquid Crystals, 2nd edn. (Oxford University Press, Oxford, 1993)

    Google Scholar 

  24. P. Bhaskara Rao, D.M. Potukuchi, J.S.R. Murthy, N.V.S. Rao, V.G.K.M. Pisipati, Cryst. Res. Technol. 27, 839 (1992)

    Google Scholar 

  25. N.V.S. Rao, V.G.K.M. Pisipati, P.V. Datta Prasad, P.R. Alapati, D. Saran, Mol. Cryst. Liq. Cryst. 132(1–2), 1–21 (1986)

    Google Scholar 

  26. J.V. Rao, K.R.K. Rao, L.V. Choudary, P. Venkatacharyulu, Cryst. Res. Technol. 21, 1245 (1986)

    Google Scholar 

  27. Z.G. Gardlund, R.J. Curtis, G.W. Smith, J. Chem. Soc. Chem. Commun. 6, 202 (1973)

    Google Scholar 

  28. G.W. Smith, Z.G. Gardlund, J. Chem. Phys. 59, 3214 (1973)

    ADS  Google Scholar 

  29. K.N. Singh, N.M. Singh, H.B. Sharma, P.R. Alapati, J. Adv. 8, 2176 (2015)

    Google Scholar 

  30. B. Bonev, V.G.K.M. Pisiapti, A.G. Petrov, Liq. Cryst. 6, 133 (1989)

    Google Scholar 

  31. V.G.K.M. Pisipati, N.V.S. Rao, D.M. Potukuchi, P.R. Alapati, P.B. Rao, Mol. Cryst. Liq. Cryst. 167, 167 (1989)

    Google Scholar 

  32. W.H. de Jeu, ThW Lathouwers, Z. Naturforsch 30a, 79 (1975)

    ADS  Google Scholar 

  33. H. Haga, C.W. Garland, Liq. Cryst. 22, 275 (1997)

    Google Scholar 

  34. H. Gasparoux, J.R. Lalanne, B. Martin, Mol. Cryst. Liq. Cryst. 51, 221 (1979)

    Google Scholar 

  35. W. Thyen, F. Heinemann, P. Zugenmaier, Liq. Cryst. 16, 993 (1994)

    Google Scholar 

  36. G.P. Rani, D.M. Potukuchi, N.V.S. Rao, V.G.K.M. Pisipati, Mol. Cryst. Liq. Cryst. 289, 169 (1996)

    Google Scholar 

  37. M. Meichle, C.W. Garland, Phys. Rev. A 27, 2624 (1983)

    ADS  Google Scholar 

  38. C.R.C. Prabhu, S. Lakshminarayana, V.G.K.M. Pisipati, Z. Naturforsch 59a, 537 (2004)

    ADS  Google Scholar 

  39. P.V.D. Prasad, M.R.N. Rao, J. Lalithakumari, V.G.K.M. Pisipati, Phys. Chem. Liq. 47, 123 (2009)

    Google Scholar 

  40. M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, W.A. de Jong, Comput. Phys. Commun. 181, 1477 (2010)

    ADS  Google Scholar 

  41. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    ADS  Google Scholar 

  42. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    ADS  Google Scholar 

  43. Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120, 215 (2008)

    Google Scholar 

  44. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985)

    ADS  Google Scholar 

  45. P.C. Hariharan, J.A. Pople, Theor. Chim. Acta 28, 213 (1973)

    Google Scholar 

  46. Y. Wang, F. Wang, J. Li, Z. Huang, S. Liang, J. Zhou, Energies MDPI 10(4), 1 (2017)

    Google Scholar 

  47. M.F. Vuks, Opt. Spectrosc. 20, 361 (1966)

    ADS  Google Scholar 

  48. A. Kumar, A.K. Srivastava, S.N. Tiwari, N. Misra, D. Sharma, Mol. Cryst. Liq. Cryst. 681(1), 23–31 (2019)

    Google Scholar 

  49. J. Tirado-Rives, W.L. Jorgensen, J. Chem. Theory Comput. 4, 297 (2008)

    Google Scholar 

  50. S.-I. Lu, C.-C. Chiu, Y.-G. Wag, J. Chem Phys. 135, 134104 (2011)

    ADS  Google Scholar 

  51. B. Kirste, Chem. Sci. J 7, 2 (2016)

    Google Scholar 

Download references

Acknowledgements

NK is very thankful to the university grants commission (UGC), New Delhi, for providing financial support (NFSC). Authors are very grateful to Dr. Anakuthil Anoop, Associate Professor, department of chemistry, Indian Institute of Technology Kharagpur (IITK), West Bengal, India, for providing the help of python aggregation. Pawan Singh and Shivani Chaudhary thankful to UGC for providing non-net fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Singh, P., Upadhyay, P. et al. Odd–even effect of 7O.m liquid crystal compound series studied under the effect of the electric field by density functional theory (DFT) methods. Eur. Phys. J. Plus 135, 388 (2020). https://doi.org/10.1140/epjp/s13360-020-00386-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00386-9

Navigation