Skip to main content
Log in

Numerical Analysis of the Microstructure-based Model for Layered Composites via MC and FEM Approaches

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

A numerical approach combining the Monte Carlo (MC) and the finite element method (FEM) is developed and applied to investigate the mechanical performance of layered composites. We consider a simplified two-dimensional layered composite model and mainly focus on the stress response with the effects of the grain orientation, grain boundary properties, and the laminated topological structure. The stress distribution in the materials is heterogeneous in each individual layer because of grain orientation. The stress level in the hard layers is higher than that in the soft layers from the point of view of global stress distribution. The average stress changes with the inner layer thickness and the number of layers. The average stress increases almost linearly with the modulus ratio for the homogeneous materials, whereas it is nonlinear for the heterogeneous polycrystalline layered materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. R. Bermejo, A.J. Sánchez-Herencia, L. Llanes, C. Baudín, Acta Mater. 55(14), 4891 (2007)

    Article  Google Scholar 

  2. R. Bermejo, J. Pascual, T. Lube, R. Danzer, J. Eur, Ceram. Soc. 28(8), 1575 (2008)

    Article  Google Scholar 

  3. C.W. Li, C.A. Wang, Y. Huang, Rare Metal Mater. Eng. 34, 475 (2005)

    Google Scholar 

  4. Z. Yang, S. Sista, J.W. Elmer, T. Debroy, Acta Mater. 48(20), 4813 (2000)

    Article  Google Scholar 

  5. Q. Yu, S.K. Esche, Mater. Lett. 57(30), 4622 (2003)

    Article  Google Scholar 

  6. J. Geiger, A. Roósz, P. Barkóczy, Acta Mater. 49(4), 623 (2001)

    Article  Google Scholar 

  7. D.S. Svyetlichnyy, Sci, Modell. Simul. Mater. Eng. 22(8), 085001 (2014)

    Article  ADS  Google Scholar 

  8. C.E. Krill, III, L.Q. Chen, Acta Mater. 50(12), 3057 (2002)

  9. P. Blikstein, A.P. Tschiptschin, Mater. Res. 2, 133 (1999)

    Article  Google Scholar 

  10. S.M. Hafez Haghighat, A. Karimi Taheri, Mater. Des. 28(9), 2533 (2007)

    Article  Google Scholar 

  11. A. Brahme, J. Fridy, H. Weiland, A.D. Rollett, Modell. Simul. Mater. Sci. Eng. 17(1), 015005 (2009)

    Article  ADS  Google Scholar 

  12. L. Sieradzki, L. Madej, Comp. Mater. Sci. 67, 156 (2013)

    Article  Google Scholar 

  13. S.K. Esche, in Monte Carlo simulations of grain growth in metals (InTech, 2011), pp. 581–610

  14. J.B. Allen, C.F. Cornwell, B.D. Devine, C.R. Welch, Comp. Mater. Sci. 71, 25 (2013)

    Article  Google Scholar 

  15. M.P. Anderson, D.J. Srolovitz, G.S. Grest, P.S. Sahni, Acta Metall. 32(5), 783 (1984)

    Article  Google Scholar 

  16. D.J. Srolovitz, M.P. Anderson, P.S. Sahni, G.S. Grest, Acta Metall. 32(5), 793 (1984)

    Article  Google Scholar 

  17. H.M. Cheng, C.Z. Huang, H.L. Liu, B. Zou, Comp. Mater. Sci. 47(2), 326 (2009)

    Article  Google Scholar 

  18. B. Fang, C.Z. Huang, H.L. Liu, C.H. Xu, S. Sun, J. Mater, Process. Technol. 209(9), 4568 (2009)

    Article  Google Scholar 

  19. S. Hao, C.Z. Huang, B. Zou, J. Wang, H.L. Liu, H.T. Zhu, Comp. Mater. Sci. 50(12), 3334 (2011)

    Article  Google Scholar 

  20. X. Guan, X.L. Geng, Northwest. Polytech. J. Univ. 22(6), 726 (2004)

    Google Scholar 

  21. V.R. Vedula, S.J. Glass, D.M. Saylor, G.S. Rohrer, W.C. Carter, S.A. Langer, E.R. Fuller, J. Am. Ceram. Soc. 84(12), 2947 (2001)

    Article  Google Scholar 

  22. K. Mori, H. Matsubara, N. Noguchi, Int. J. Mech. Sci. 46(6), 841 (2004)

    Article  MATH  Google Scholar 

  23. Y.F. Liu, L.F. Cheng, Q.F. Zeng, Z.Q. Feng, J. Zhang, J.H. Peng, C.W. Xie, K. Guan, Mater. Des. 55, 740 (2014)

    Article  Google Scholar 

  24. Q. Yu, M. Nosonovsky, S.K. Esche, Int. J. Mech. Sci. 51(6), 434 (2009)

    Article  Google Scholar 

  25. G.S. Grest, D.J. Srolovitz, M.P. Anderson, Acta Metall. 33(3), 509 (1985)

    Article  Google Scholar 

  26. Y.J. Xu, W.H. Zhang, H.B. Wang, Mater. Sci. Technol. 24(4), 435 (2008)

    Article  Google Scholar 

  27. Z.Q. Feng, Z.G. Feng, in Computational mechanics. WCCM VI in conjunction with APCOM04, ed. by Z.H. Yao, M.W. Yuan, W.X. Zhong (Springer, Beijing, China, 2004)

  28. J.B. Allen, J. Eng. J. Eng. Mater.-T. ASME. 136(3) (2014)

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 51372203 and 11372260), the National Basic Research Program of China (973 Program) (2011CB605806), the Basic Research Foundation of NWPU (Nos. JCY20130114 and JCY20110248), and the Foreign Talents Introduction and Academic Exchange Program (No. B08040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zeng, Q., Feng, Z. et al. Numerical Analysis of the Microstructure-based Model for Layered Composites via MC and FEM Approaches. Braz J Phys 46, 87–96 (2016). https://doi.org/10.1007/s13538-015-0379-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-015-0379-y

Keywords

Navigation