Skip to main content
Log in

Influence of Microstructure Randomness on the Shear Behaviour and Compressive Strength of Continuous Carbon Fibre Composites

  • Research
  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Axial compressive strength is a key design parameter for CFRP structures. One of its limiting factors is the non-linear shear behaviour of the unidirectional ply. We investigate the estimation of this behaviour from those of its constituents by computational homogenisation with an hexagonal unit cell and different random microstructures with smooth and clustered fibre distributions. A random microstructure without clusterings predicts the shear modulus most closely. However, the modelled shear responses converge at higher loadings so that an hexagonal model is sufficient to estimate the non-linear shear behaviour and in turn give accurate estimations of measured compressive strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data will be made available on request.

Notes

  1. By arrangement we mean the randomness of the microstructure and not the misalignment or waviness of the fibres.

References

  1. Fleck, N.A.: Compressive failure of fiber composites. Adv. Appl. Mech. 33, 43–117 (1997)

    Article  Google Scholar 

  2. Lee, J., Soutis, C.: A study on the compressive strength of thick carbon fibre–epoxy laminates. Compos. Sci. Technol. 67(10), 2015–2026 (2007). https://doi.org/10.1016/j.compscitech.2006.12.001

    Article  CAS  Google Scholar 

  3. Pimenta, S., Gutkin, R., Pinho, S.T., Robinson, P.: A micromechanical model for kink-band formation: Part I - Experimental study and numerical modelling. Compos. Sci. Technol. 69(7–8), 948–955 (2009). https://doi.org/10.1016/j.compscitech.2009.02.010

    Article  Google Scholar 

  4. Wu, X., Wisnom, M.R.: Compressive failure strain of unidirectional carbon fibre composites from bending tests. Compos. Struct. 304, 116467 (2023). https://doi.org/10.1016/j.compstruct.2022.116467

    Article  Google Scholar 

  5. Budiansky, B., Fleck, N.A.: Compressive failure of fibre composites. J. Mech. Phys. Solids 41(1), 183–211 (1993)

    Article  Google Scholar 

  6. Mechin, P.Y., Keryvin, V., Grandidier, J.C., Glehen, D.: An experimental protocol to measure the parameters affecting the compressive strength of CFRP with a fibre micro-buckling failure criterion. Compos. Struct. 211, 154–162 (2019). https://doi.org/10.1016/j.compstruct.2018.12.026

    Article  Google Scholar 

  7. Mechin, P.Y., Keryvin, V., Grandidier, J.C.: Effect of the nano-filler content on the compressive strength of continuous carbon fibre/epoxy matrix composites. Compos. B Eng. 224(July), 109223 (2021). https://doi.org/10.1016/j.compositesb.2021.109223

    Article  CAS  Google Scholar 

  8. Yvonnet, J.: Computational homogenization of heterogeneous materials with finite elements. Solid Mechanics and its Applications, vol. 258. Springer International Publishing (2019)

    Google Scholar 

  9. Khisaeva, Z.F., Ostoja-Starzewski, M.: On the size of RVE in finite elasticity of random composites. J. Elast. 85(2), 153–173 (2006). https://doi.org/10.1007/s10659-006-9076-y

    Article  Google Scholar 

  10. Ha, S.K., Jin, K.K., Huang, Y.: Micro-Mechanics of Failure (MMF) for continuous fiber reinforced composites. J. Compos. Mater. 42(18), 1873–1895 (2008). https://doi.org/10.1177/0021998308093911

    Article  Google Scholar 

  11. Ghayoor, H., Hoa, S.V., Marsden, C.C.: A micromechanical study of stress concentrations in composites. Compos. B Eng. 132, 115–124 (2018). https://doi.org/10.1016/j.compositesb.2017.09.009

    Article  CAS  Google Scholar 

  12. Li, S.: General unit cells for micromechanical analyses of unidirectional composites. Composites - Part A: Applied Science and Manufacturing. 32(6), 815–826 (2001). https://doi.org/10.1016/S1359-835X(00)00182-2

    Article  Google Scholar 

  13. Huang, Y., Xu, L., Kyu, Ha. S.: Prediction of three-dimensional composite laminate response using micromechanics of failure. J. Compos. Mater. 46, 2431–2442 (2012). https://doi.org/10.1177/0021998312449888

    Article  Google Scholar 

  14. Ha, S.K., Huang, Y., Han, H.H., Jin, K.K.: Micromechanics of failure for ultimate strength predictions of composite laminates. J. Compos. Mater. 44(20), 2347–2361 (2010). https://doi.org/10.1177/0021998310372464

    Article  Google Scholar 

  15. Sun, W., Guan, Z., Li, Z., Zhang, M., Huang, Y.: Compressive failure analysis of unidirectional carbon/epoxy composite based on micro-mechanical models. Chin. J. Aeronaut. 30(6), 1907–1918 (2017). https://doi.org/10.1016/j.cja.2017.10.002

    Article  Google Scholar 

  16. Mechin, P., Keryvin, V.: Compressive strength estimation of continuous carbon fibre / epoxy resin composite by micro-mechanical numerical modelling. Compos. Struct. 2023(305), 116534 (2022). https://doi.org/10.1016/j.compstruct.2022.116534

    Article  CAS  Google Scholar 

  17. Riaño, L., Joliff, Y.: An Abaqus plug-in for the geometry generation of Representative Volume Elements with randomly distributed fibers and interphases. Compos. Struct. 2019(209), 644–651 (2018). https://doi.org/10.1016/j.compstruct.2018.10.096

    Article  Google Scholar 

  18. Weng, J., Wen, W., Cui, H., Chen, B.: Micromechanical analysis of composites with fibers distributed randomly over the transverse cross-section. Acta Astronaut. 147(April), 133–140 (2018). https://doi.org/10.1016/j.actaastro.2018.03.056

    Article  Google Scholar 

  19. Pathan, M.V., Tagarielli, V.L., Patsias, S., Baiz-Villafranca, P.M.: A new algorithm to generate representative volume elements of composites with cylindrical or spherical fillers. Compos. B Eng. 110, 267–278 (2017). https://doi.org/10.1016/j.compositesb.2016.10.078

    Article  CAS  Google Scholar 

  20. Ballard, M.K., McLendon, W.R., Whitcomb, J.D.: The influence of microstructure randomness on prediction of fiber properties in composites. J. Compos. Mater. 48(29), 3605–3620 (2014). https://doi.org/10.1177/0021998313511654

    Article  CAS  Google Scholar 

  21. Wang, Z., Wang, X., Zhang, J., Liang, W., Zhou, L.: Automatic generation of random distribution of fibers in long-fiber-reinforced composites and mesomechanical simulation. Mater. Des. 32(2), 885–891 (2011). https://doi.org/10.1016/j.matdes.2010.07.002

    Article  CAS  Google Scholar 

  22. Tchalla, A., Belouettar, S., Makradi, A., Zahrouni, H.: An ABAQUS toolbox for multiscale finite element computation. Compos. B Eng. 52, 323–333 (2013). https://doi.org/10.1016/j.compositesb.2013.04.028

    Article  Google Scholar 

  23. Gusev, A.A., Hine, P.J., Ward, I.M.: Fiber packing and elastic properties of a transversely random unidirectional glass/epoxy composite. Compos. Sci. Technol. 60(4), 535–541 (2000). https://doi.org/10.1016/S0266-3538(99)00152-9

    Article  CAS  Google Scholar 

  24. Melro, A.R., Camanho, P.P., Pinho, S.T.: Generation of random distribution of fibres in long-fibre reinforced composites. Compos. Sci. Technol. 68(9), 2092–2102 (2008). https://doi.org/10.1016/j.compscitech.2008.03.013

    Article  CAS  Google Scholar 

  25. Yang, L., Yan, Y., Ran, Z., Liu, Y.: A new method for generating random fibre distributions for fibre reinforced composites. Compos. Sci. Technol. 76, 14–20 (2013). https://doi.org/10.1016/j.compscitech.2012.12.001

    Article  CAS  Google Scholar 

  26. Vaughan, T.J., McCarthy, C.T.: A combined experimental-numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials. Compos. Sci. Technol. 70(2), 291–297 (2010). https://doi.org/10.1016/j.compscitech.2009.10.020

    Article  CAS  Google Scholar 

  27. Bargmann, S., Klusemann, B., Markmann, J., Schnabel, J.E., Schneider, K., Soyarslan, C., et al.: Generation of 3D representative volume elements for heterogeneous materials: A review. Prog. Mater Sci. 96, 322–384 (2018). https://doi.org/10.1016/j.pmatsci.2018.02.003

    Article  Google Scholar 

  28. Mechin, P.Y., Keryvin, V., Grandidier, J.C.: Limitations on adding nano-fillers to increase the compressive strength of continuous fibre / epoxy matrix composites. Compos. Sci. Technol. 2020(192), 108099 (2019). https://doi.org/10.1016/j.compscitech.2020.108099

    Article  CAS  Google Scholar 

  29. Guruprasad, T.S., Keryvin, V., Charleux, L., Guin, J.P., Arnould, O.: On the determination of the elastic constants of carbon fibres by nanoindentation tests. Carbon 173, 572–586 (2021). https://doi.org/10.1016/j.carbon.2020.09.052

    Article  CAS  Google Scholar 

  30. Bi, J., Hanke, F., Ji, H., McLendon, R., Todd, S., Dalrymple, T., et al.: Multiscale Modeling for the Science and Engineering of Materials. Int. J. Multiscale Comput. Eng. 19(3), 1–80 (2021). https://doi.org/10.1615/INTJMULTCOMPENG.2021040247

    Article  Google Scholar 

  31. Hashin, Z., Shtrikman, S.: Note on a variational approach to the theory of composite elastic materials. J. Franklin Inst. 271(4), 336–341 (1961). https://doi.org/10.1016/0016-0032(61)90032-1

    Article  Google Scholar 

  32. Hashin, Z.: Analysis of composite materials - a survey. J. Appl. Mech. 50(3), 481–505 (1983). https://doi.org/10.1115/1.3167081

    Article  Google Scholar 

  33. Hashin, Z.V.I., Rosen, B.W.: The elastic moduli of fiber-reinforced materials. J. Appl. Mech. 31(2), 223–232 (1964). https://doi.org/10.1115/1.3629590

    Article  Google Scholar 

  34. Christensen, R.M., Lo, K.H.: Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27(4), 315–330 (1979). https://doi.org/10.1016/0022-5096(79)90032-2

    Article  CAS  Google Scholar 

  35. Hojo, M., Mizuno, M., Hobbiebrunken, T., Adachi, T., Tanaka, M., Ha, S.K.: Effect of fiber array irregularities on microscopic interfacial normal stress states of transversely loaded UD-CFRP from viewpoint of failure initiation. Compos. Sci. Technol. 69(11–12), 1726–1734 (2009). https://doi.org/10.1016/j.compscitech.2008.08.032

    Article  CAS  Google Scholar 

  36. Yang, L., Yan, Y., Ma, J., Liu, B.: Effects of inter-fiber spacing and thermal residual stress on transverse failure of fiber-reinforced polymer-matrix composites. Comput. Mater. Sci. 68, 255–262 (2013). https://doi.org/10.1016/j.commatsci.2012.09.027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. McLendon and H. Ji for their support on RVEs computation and analysis. We thank also R. Perron (CATIA VP R &D) and R. Keswani for their support using 3DEXPERIENCE xGenerative Design 5visual Scripting), P. Dausse and N. Dupuis for advanced meshing definition on RVEs in Structural Model Creation. Finally, J. Klintworth and M. Clarke are acknowledged for discussion.

Funding

No particular funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

PYM and VK supervised the work. AB made the calculations. PYM, AB, VK prepared the figures. PYM and VK wrote the initial draft of the manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Vincent Keryvin.

Ethics declarations

Ethics Approval and Consent to Participate

Ethical approval is not applicable for this article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Microstructure Generation

A workflow for microstructure generation is shown in Fig. 10. First, the size of the Representative Volume Element (RVE) surface is computed from inputs, including the number of fibres and their diameter (steps 1 and 2). Then, using the number of fibres parameter, points are randomly distributed in a 2D space (xGenerative Design app offer random geometry algorithms) constrained by a minimum distance between points equivalent to the diameter of fibre and the minimum spacing between fibres (step 3). Those geometrical points are then used as the centres for each fibre generated. The size of the RVE is fixed according to the targeted volume fraction. Fibres located on or outside the boundary are excluded or split with the boundary. Removing parts of fibres are introduced on the opposite face to ensure RVE remains periodical (step 4). Fibres are slightly moved to respect minimum spacing between fibres and avoid any overlapping (step 5). A last optimisation is then ran to accurately reach the targeted volume fraction of fibres by slightly extending/reducing the boundary of the RVE (step 6). Using the workflow (Fig. 10), several approaches can be considered for the position of the center of fibres. First, a strategy is to build the first centroid and then building the other points, centroid per centroid considering the minimum distance between fibres set by the user. This methodology referred to as Germination leads to microstructures with low fibres content areas in the RVE, reflected on each RVE generated. A second strategy is based on a smooth distribution of the fibres over the section surface. The position of centroid fulfills constraint of minimum spacing between fibres but additional corrections are made to ensure the right fibre volume fraction is obtained with more distributed fibres position. This second strategy is referred to as Smooth RVE.

Fig. 10
figure 10

Steps of the methodology to build a random RVE model (Germination). At first, inputs are set to support the position of center of fibres. Then fibres sections are set and no-overlapping control is performed to optimize position of fibres. Finally, geometry is extruded. Representative Volume Element (RVE) with random distribution using Germination algorithm

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méchin, PY., Borras, A. & Keryvin, V. Influence of Microstructure Randomness on the Shear Behaviour and Compressive Strength of Continuous Carbon Fibre Composites. Appl Compos Mater (2024). https://doi.org/10.1007/s10443-024-10230-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10443-024-10230-3

Keywords

Navigation