Skip to main content
Log in

Ultrasonic transducers for medical diagnostic imaging

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Over the past decades, ultrasound imaging technology has made tremendous progress in obtaining important diagnostic information from patients in a rapid, noninvasive manner. Although the technology has benefited from sophisticated signal processing technology and imaging system integration, much of this progress has been derived from the development of ultrasonic transducers that are in direct contact with patients. An overview of medical ultrasonic imaging transducers is presented in this review that describes their structure, types, and application fields. The structural components of a typical transducer are presented in detail including an active layer, acoustic matching layers, a backing block, an acoustic lens, and kerfs. The types of transducers are classified according to the dimensions of ultrasound images: one-dimensional array, mechanical wobbling, and two-dimensional array transducers. Advantages of each transducer over the other and the technical issues for further performance enhancement are described. Application of the transducers to various clinical imaging fields is also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Suetens P. Fundamentals of medical imaging. 2nd ed. Cambridge: Cambridge University Press; 2009. p. 33–158.

    Book  Google Scholar 

  2. GE Healthcare. Voluson E10 Brochure. USA: 2014.

  3. Siemens Healthcare. Acuson X700 Brochure. USA: 2014.

  4. Philips Healthcare. EPIQ 7 Brochure. Netherland: 2013.

  5. Alpinion Medical Systems Co., Ltd. E-Cube 15 Brochure. Korea: 2015.

  6. Toshiba Medical Systems Corporation. Aplio500 Brochure. Japan: 2012.

  7. Angelsen BAJ. Ultrasound imaging. waves, signals, and signal processing, vol. I. Trondheim: Emantec AS; 2000. p.1.3–1.88.

  8. Desilets CS, Fraser JD, Kino GS. The design of efficient broad-band piezoelectric transducers. IEEE Trans Sonics Ultrason. 1978;25(3):115–25.

    Article  Google Scholar 

  9. Sliwa Jr. JW, Ayter S, Sridhar CG, Mohr JP, Howard SM, Ikeda MH. Ultrasound trasnducer with improved rigid backing; 1994. US 5297553.

  10. Chapagain KR, Ronnekleiv A. Grooved backing structure for CMUTs. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60(11):2440–52.

    Article  Google Scholar 

  11. Bae B, Lee H, Lee S, Lee W, Roh Y. Development of a highly attenuative backing for ultrasonic transduces with periodic arrangement of polymeric rods inside the backing. In: Conference proceedings of the IEEE ultrasonic symposium; 2013. p. 1105–08.

  12. McKeighen RE. Design guidelines for medical ultrasonic arrays. In: Conference proceedings of the SPIE international society for optical engineering; 1998. p. 2–18.

  13. Kinsler LE, Frey AR, Coppens AB, Sanders JV. Fundamentals of acoustics. 4th ed. New York: Wiley; 2002. p. 114–241.

    Google Scholar 

  14. Hosono Y, Yamashita Y, Itsumi K. Effects of fine metal oxide particle dopant on the acoustic properties of silicone rubber lens for medical array probe. IEEE Trans Ultrason Ferroelectr Freq Control. 2007;54(8):1589–95.

    Article  Google Scholar 

  15. Itsumi K, Hosono Y, Yamamoto N, Yamashita Y. Low acoustic attenuation silicone rubber lens for medical ultrasonic array probe. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(4):870–4.

    Article  Google Scholar 

  16. Roh Y, Khuri-Yakub BT. Finite element analysis of underwater capacitor micromachined ultrasonic transducers. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49(3):293–8.

    Article  Google Scholar 

  17. Lee W, Roh Y. New design of the kerfs of an ultrasonic two-dimensional array transducer to minimize cross-talk. Jpn J Appl Phys. 2010;49:07HD06.

    Google Scholar 

  18. Certon D, Felix N, Lacaze E, Teston F, Patat F. Investigation of cross-coupling in 1–3 piezocomposite arrays. IEEE Trans Ultrason Ferroelectr Freq Control. 2001;48(1):85–92.

    Article  Google Scholar 

  19. Mills DM, Smith SW. Finite element comparison of single crystal versus multi-layer composite arrays for medical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49(7):1015–20.

    Article  Google Scholar 

  20. Ristic VM. Principles of Acoustic Devices. New York: Wiley; 1983. p. 121–67.

    Google Scholar 

  21. Lu XM, Proulx TL. Single crystals versus PZT ceramics for medical ultrasound applications. In: Conference proceedings of the IEEE ultrasonic symposium; 2005. p. 227–30.

  22. Goldberg RL, Jurgens MJ, Mills DM, Henriquez CS, Vaughan D, Smith SW. Modeling of piezoelectric multilayer ceramics using finite element analysis. IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(6):1204–14.

    Article  Google Scholar 

  23. Mequio CR. Ultrasound transducer; 1988. US 4771205.

  24. Barthe PG, Slayton MH. Wideband acoustic transducer; 2000. US 6049159.

  25. Oralkan O, Ergun AS, Johnson JA, Karaman M, Demirci U, Kaviani K, Lee TH, Khuri-Yakub BT. Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49(11):1596–610.

    Article  Google Scholar 

  26. Wang T, Lee C. Zero-bending piezoelectric micromachined ultrasonic transducer (pMUT) with enhanced transmitting performance. J Microelectromech Syst. 2015;24(6):2083–91.

    Article  Google Scholar 

  27. Wu Z, Cochran S. Loss effects on adhesively-bonded multilayer ultrasonic transducers by self-heating. Ultrasonics. 2010;50(4–5):508–11.

    Article  Google Scholar 

  28. Choi E, Lee W, Roh Y. Thermal dispersion method for an ultrasonic phased-array transducer. Jpn J Appl Phys. 2016;55:07KD13.

    Article  Google Scholar 

  29. Wildes DG, Chiao RY, Daft CMW, Rigby KW, Smith LS, Thomenius KE. Elevation performance of 1.25D and 1.5D transducer arrays. IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(5):1027–37.

    Article  Google Scholar 

  30. Dhanaliwala AH, Hossack JA, Mauldin FW Jr. Assessing and improving acoustic radiation force image quality using a 1.5-D transducer design. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59(7):1602–8.

    Article  Google Scholar 

  31. Roh Y. Ultrasonic transducers for medical volumetric imaging. Jpn J Appl Phys. 2014;53:07KA01.

    Article  Google Scholar 

  32. Voormolen MM, Krenning BJ, Lancee CT, ten Cate FJ, Roelandt JRTC, van der Steen AFW, de Jong N. Harmonic 3-D echocardiography with a fast-rotating ultrasound transducer. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53(10):1739–48.

    Article  Google Scholar 

  33. Angelsen BAJ, Johansen TF, Kjode SB. Mechanism and system for 3-dimensional scanning of an ultrasound beam; 2004. US 6780153 B2.

  34. Ratsimandresy L, Mauchamp P, Dinet D, Felix N, Dufait R. A 3 MHz two dimensional array based on piezocomposite for medical imaging. In: Conference proceedings of the IEEE ultrasonic symposium; 2002. p. 1265–8.

  35. Woo J, Roh Y. Ultrasonic 2D matrix array transducer for volumetric imaging in real time. In: Conference proceedings of the IEEE ultrasonic symposium; 2012. p. 568–71.

  36. Seo CH, Yen JT. A 256 × 256 2-D array transducer with row-column addressing for 3-D rectilinear imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(4):837–47.

    Article  Google Scholar 

  37. Wygant IO, Jamal NS, Lee HJ, Nikoozadeh A, Oralkan O, Karaman M, Khuri-Yakub BT. An integrated circuit with transmit beamforming flip-chip bonded to a 2-D CMUT array for 3-D ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(10):2145–56.

    Article  Google Scholar 

  38. Pua EC, Idriss SF, Wolf PD, Smith SW. Real-time 3D transesophageal echocardiography. In: Conference proceedings of the IEEE ultrasonic symposium; 2004. p. 778–81.

  39. Liu L, Kutarnia J, Belady P, Pedersen PC. Obstetric ultrasound simulator with task-based training and assessment. IEEE Trans Biomed Eng. 2015;62(10):2480–97.

    Article  Google Scholar 

  40. Hignett M, Claman P. High rates of perforation are found in endovaginal ultrasound probe covers before and after oocyte retrieval for in vitro fertilization-embryo transfer. J Assist Reprod Genet. 1995;12(9):606–9.

    Article  Google Scholar 

  41. Katouzian A, Angelini ED, Carlier SG, Suri JS, Navab N. A state-of-the-art review on segmentation algorithms in intravascular ultrasound (IVUS) images. IEEE Trans Inf Technol Biomed. 2012;16(5):823–34.

    Article  Google Scholar 

  42. Brodal E, Melandso F, Jacobsen S. Performance of an ultrasonic imaging system based on a 45-MHz linear PVDF transducer array: a numerical study. Adv Acoust Vib. 2011; 984596.

Download references

Acknowledgements

This research was supported by the Next-generation Medical Device Development Program for the Newly-Created Market of the National Research Foundation (NRF) funded by the Korean government, MSIP (No. 2016M3D5A1937126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongrae Roh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, W., Roh, Y. Ultrasonic transducers for medical diagnostic imaging. Biomed. Eng. Lett. 7, 91–97 (2017). https://doi.org/10.1007/s13534-017-0021-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-017-0021-8

Keywords

Navigation