Skip to main content

Advertisement

Log in

Fabrication and evaluation of an improved polymer-based cochlear electrode array for atraumatic insertion

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

An atraumatic cochlear electrode array has become indispensable to high-performance cochlear implants such as electric acoustic stimulation (EAS), wherein the preservation of residual hearing is significant. For an atraumatic implantation, we propose and demonstrate a new improved design of a cochlear electrode array based on liquid crystal polymer (LCP), which can be fabricated by precise batch processes and a thermal lamination process, in contrast to conventional wire-based cochlear electrode arrays. Using a thin-film process of LCP-film-mounted silicon wafer and thermal press lamination, we devise a multi-layered structure with variable layers of LCP films to achieve a sufficient degree of basal rigidity and a flexible tip. A peripheral blind via and self-aligned silicone elastomer molding process can reduce the width of the array. Measuring the insertion and extraction forces in a human scala tympani model, we investigate five human temporal bone insertion trials and record electrically evoked auditory brainstem responses (EABR) acutely in a guinea pig model. The diameters of the finalized electrode arrays are 0.3 mm (tip) and 0.75 mm (base). The insertion force with a displacement of 8 mm from a round window and the maximum extraction force are 2.4 mN and 34.0 mN, respectively. The electrode arrays can be inserted from 360° to 630° without trauma at the basal turn. The EABR data confirm the efficacy of the array. A new design of LCP-based cochlear electrode array for atraumatic implantation is fabricated. Verification indicates that foretells the development of an atraumatic cochlear electrode array and clinical implant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • M.H. Agterberg, H. Versnel, L. Dijk, J.M.J. Groot, S.L. Klis, Enhanced survival of spiral ganglion cells after cessation of treatment with brain-derived Neurotrophic factor in deafened guinea pigs. JARO 10(3), 355–367 (2009)

    Article  Google Scholar 

  • P.T. Bhatti, A High-Density Thin-Film Electrode Array for a Cochlear Prosthesis. PhD thesis. Electrical Engineering. The University of Michigan (2006)

  • B. Bhushan, Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction. J. Vac. Sci. Technol. B 21(6), 2262–2296 (2003)

    Article  Google Scholar 

  • E.Y. Chow, A.L. Chlebowski, P.P. Irazoqui, A miniature-implantable RF-wireless active glaucoma intraocular pressure monitor. IEEE Trans. Bio-Med. Circ. Syst. 4(6), 340–349 (2010)

    Article  Google Scholar 

  • E.C. Culbertson, A new laminate material for high performance PCBs: liquid crystal polymer copper clad films. In: Electronic Components and Technology Conference, 1995. Proceedings., 45th. pp 520–523 (1995)

  • A.A. Eshraghi, N.W. Yang, T.J. Balkany, Comparative study of cochlear damage with three perimodiolar electrode designs. Laryngoscope 113(3), 415–419 (2003)

    Article  Google Scholar 

  • A. Faulkner, S. Rosen, D. Stanton, Simulations of tonotopically mapped speech processors for cochlear implant electrodes varying in insertion depth. J. Acoust. Soc. Am. 113(2), 1073–1080 (2003)

    Article  Google Scholar 

  • J.N. Fayad, T. Baino, S.C. Parisier, Revision cochlear implant surgery: causes and outcome. Otolaryngol.--Head Neck Surg.: Off. J. Am. Acad. Otolaryngol.-Head Neck Surg. 131(4), 429–432 (2004)

    Article  Google Scholar 

  • D.D. Greenwood, A cochlear frequency‐position function for several species—29 years later. J. Acoust. Soc. Am. 87(6), 2592–2605 (1990)

    Article  Google Scholar 

  • C. Hassler, T. Boretius, T. Stieglitz, Polymers for neural implants. J. Polym. Sci. B Polym. Phys. 49(1), 18–33 (2011)

    Article  Google Scholar 

  • G.-T. Hwang, D. Im, S.E. Lee, J. Lee, M. Koo, S.Y. Park, S. Kim, K. Yang, S.J. Kim, K. Lee, K.J. Lee, In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers. ACS Nano 7(5), 4545–4553 (2013)

    Article  Google Scholar 

  • S. Irving, M.I. Trotter, J.B. Fallon, R.E. Millard, R.K. Shepherd, A.K. Wise, Cochlear implantation for chronic electrical stimulation in the mouse. Hear. Res. 306, 37–45 (2013)

    Article  Google Scholar 

  • K. Kang, I.S. Choi, Y. Nam, A biofunctionalization scheme for neural interfaces using polydopamine polymer. Biomaterials 32(27), 6374–6380 (2011)

    Article  Google Scholar 

  • T.G. Landry, A.K. Wise, J.B. Fallon, R.K. Shepherd, Spiral ganglion neuron survival and function in the deafened cochlea following chronic neurotrophic treatment. Hear. Res. 282(1–2), 303–313 (2011)

    Article  Google Scholar 

  • S.W. Lee, J.M. Seo, S. Ha, E.T. Kim, H. Chung, S.J. Kim, Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers. Invest. Ophthalmol. Vis. Sci. 50(12), 5859–5866 (2009)

    Article  Google Scholar 

  • S.W. Lee, K.S. Min, J. Jeong, J. Kim, S.J. Kim, Monolithic encapsulation of implantable neuroprosthetic devices using liquid crystal polymers. IEEE Trans. Bio-Med. Eng. 58(8), 2255–2263 (2011)

    Article  Google Scholar 

  • C. Liu, Recent developments in polymer MEMS. Adv. Mater. 19(22), 3783–3790 (2007)

    Article  Google Scholar 

  • C.A. Miller, K.E. Woodruff, B.E. Pfingst, Functional responses from guinea pigs with cochlear implants. I. Electrophysiological and psychophysical measures. Hear. Res. 92(1–2), 85–99 (1995)

    Article  Google Scholar 

  • K.S. Min, A Study on the Liquid Crystal Polymer-Based Intracochlear Electrode Array. PhD thesis. Department of Electrical and Computer Engineering. Seoul National University, Seoul National University Library, (2014a)

  • K.S. Min, S.H. Oh, M.H. Park, J. Jeong, S.J. Kim, A polymer-based multichannel cochlear electrode array. Otol. Neurotol. 35(7), 1179–86 (2014b)

    Google Scholar 

  • A. Mitchell, J.M. Miller, P.A. Finger, J.W. Heller, Y. Raphael, R.A. Altschuler, Effects of chronic high-rate electrical stimulation on the cochlea and eighth nerve in the deafened guinea pig. Hear. Res. 105(1–2), 30–43 (1997)

    Article  Google Scholar 

  • M. Müller, K. Hünerbein, S. Hoidis, J.W.T. Smolders, A physiological place–frequency map of the cochlea in the CBA/J mouse. Hear. Res. 202(1–2), 63–73 (2005)

    Article  Google Scholar 

  • S.C. Parisier, P.M. Chute, A.L. Popp, G.D. Suh, Outcome analysis of cochlear implant reimplantation in children. Laryngoscope 111(1), 26–32 (2001)

    Article  Google Scholar 

  • R. Pelrine, R. Kornbluh, J. Joseph, R. Heydt, Q. Pei, S. Chiba, High-field deformation of elastomeric dielectrics for actuators. Mater Sci. Eng.: C 11(2), 89–100 (2000)

    Article  Google Scholar 

  • M. Polak, A.A. Eshraghi, O. Nehme, S. Ahsan, J. Guzman, R.E. Delgado, J. He, F.F. Telischi, T.J. Balkany, T.R. Van De Water, Evaluation of hearing and auditory nerve function by combining ABR, DPOAE and eABR tests into a single recording session. J. Neurosci. Methods 134(2), 141–149 (2004)

    Article  Google Scholar 

  • S.J. Rebscher, M. Heilmann, W. Bruszewski, N.H. Talbot, R.L. Snyder, M.M. Merzenich, Strategies to improve electrode positioning and safety in cochlear implants. IEEE Trans. Bio-Med. Eng. 46(3), 340–352 (1999)

    Article  Google Scholar 

  • S.J. Rebscher, A. Hetherington, B. Bonham, P. Wardrop, D. Whinney, P.A. Leake, Considerations for design of future cochlear implant electrode arrays: electrode array stiffness, size, and depth of insertion. J. Rehabil. Res. Dev. 45(5), 731–747 (2008)

    Article  Google Scholar 

  • P. Sattayasoonthorn, J. Suthakorn, S. Chamnanvej, J. Miao, A.G.P. Kottapalli, LCP MEMS implantable pressure sensor for Intracranial Pressure measurement. In: Nano/Molecular Medicine and Engineering (NANOMED), 2013 I.E. 7th International Conference on. pp 63–67 (2013)

  • J.K. Scott Corbett, T. Johnson, Polymer-Based Microelectrode Arrays. In: Materials Research Society Symposium, (2006)

  • R. Shepherd, K. Verhoeven, J. Xu, F. Risi, J. Fallon, A. Wise, An improved cochlear implant electrode array for use in experimental studies. Hear. Res. 277(1–2), 20–27 (2011)

    Article  Google Scholar 

  • F.A. Spelman, Cochlear electrode arrays: past, present and future. Audiol Neuro Otol 11(2), 77–85 (2006)

    Article  Google Scholar 

  • O. Stakhovskaya, D. Sridhar, B. Bonham, P. Leake, Frequency Map for the human cochlear spiral ganglion: implications for cochlear implants. J. Assoc. Res. Otolaryngol. 8(2), 220–233 (2007)

    Article  Google Scholar 

  • T. Stöver, P. Issing, G. Graurock, P. Erfurt, Y. ElBeltagy, G. Paasche, T. Lenarz, Evaluation of the advance off-stylet insertion technique and the cochlear insertion tool in temporal bones. Otol. Neurotol. 26(6), 1161–1170 (2005)

    Article  Google Scholar 

  • S.E. Lee, S.B. Jun, H.J. Lee, J. Kim, S.W. Lee, C. Im, H.C. Shin, J.W. Chang, S.J. Kim, A flexible depth probe using liquid crystal polymer. IEEE Trans. Bio-Med. Eng. 59(7), 2085–2094 (2012)

  • C.J. Van Oss, R.J. Good, M.K. Chaudhury, The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J. Colloid Interface Sci. 111(2), 378–390 (1986)

    Article  Google Scholar 

  • J. Wang, K.D. Wise, A hybrid electrode array with built-in position sensors for an implantable MEMS-based cochlear prosthesis. J. Microelectromech. Syst. 17(5), 1187–1194 (2008)

    Article  Google Scholar 

  • J. Wang, K.D. Wise, A thin-film cochlear electrode array with integrated position sensing. J. Microelectromech. Syst. 18(2), 385–395 (2009)

    Article  Google Scholar 

  • P. Wardrop, D. Whinney, S.J. Rebscher, J.T. Roland Jr., W. Luxford, P.A. Leake, A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. I: comparison of nucleus banded and nucleus contour™ electrodes. Hear. Res. 203(1–2), 54–67 (2005)

    Article  Google Scholar 

  • A.D. Woolfson, R.K. Malcolm, S.P. Gorman, D.S. Jones, A.F. Brown, S.D. McCullagh, Self-lubricating silicone elastomer biomaterials. J. Mater. Chem. 13(10), 2465–2470 (2003)

    Article  Google Scholar 

  • W. Xuefeng, E. Jonathan, L. Chang, Liquid crystal polymer (LCP) for MEMS: processes and applications. J. Micromech. Microeng. 13(5), 628 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Pioneer Research Center Program (NRF-2009-0082961) and the Public Welfare & Safety Research Program (NRF-2010-0020851) through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning and in part by BK21 Plus Project, Department of Electrical and Computer Engineering, SNU in 2014

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung June Kim.

Additional information

Tae Mok Gwon, Kyou Sik Min and Jin Ho Kim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gwon, T.M., Min, K.S., Kim, J.H. et al. Fabrication and evaluation of an improved polymer-based cochlear electrode array for atraumatic insertion. Biomed Microdevices 17, 32 (2015). https://doi.org/10.1007/s10544-015-9941-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-9941-1

Keywords

Navigation