Skip to main content
Log in

Graphene and thermo-responsive polymeric nanocomposites for therapeutic applications

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Functional nanomaterials are of great benefit for various therapeutic applications. Recently, the advanced emerging nanotechnology enables the synthesis of drug-loaded multifunctional graphene and thermo-responsive polymeric nanomaterials. Given the physical and biochemical properties of multi-functional graphene and thermo-responsive polymeric nanomaterials, they hold the powerful potential for therapeutic applications. In this paper, we review various graphene and thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) nanocomposites and highlight their therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langer R. Drug delivery. Drugs on target. Science. 2001; 293(5527):58–9.

    Google Scholar 

  2. Mainardes RM, Silva LP. Drug delivery systems: past, present, and future. Curr Drug Targets. 2004; 5(5):449–55.

    Article  Google Scholar 

  3. Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H. Carbon materials for drug delivery & cancer therapy. Mater Today. 2011; 14(7-8):316–23.

    Article  Google Scholar 

  4. Kim J, Piao Y, Hyeon T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev. 2009; 38(2):372–90.

    Article  Google Scholar 

  5. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007; doi:10.1038/nmat1849.

  6. Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature. 2012; 490(7419):192–200.

    Article  Google Scholar 

  7. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev. 2010; 39(1):228–40.

    Article  Google Scholar 

  8. Gao X, Jang J, Nagase S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C. 2010; 114(2):832–42.

    Article  Google Scholar 

  9. Zhou X, Zhang J, Wu H, Yang H, Zhang J, Guo S. Reducing graphene oxide via hydroxylamine: a simple and efficient route to graphene. J Phys Chem C. 2011; 115(24):11957–61.

    Article  Google Scholar 

  10. Goìmez-Navarro C, Meyer JC, Sundaram RS, Chuvilin A, Kurasch S, Burghard M, Kern K, Kaiser U. Atomic structure of reduced graphene oxide. Nano Lett. 2010; 10(4):1144–8.

    Article  Google Scholar 

  11. Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S. Reduction of graphene oxide vial-ascorbic acid. Chem Commun. 2010; 46(7):1112–4.

    Article  Google Scholar 

  12. Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater. 2008; 20(23):4490–3.

    Article  Google Scholar 

  13. Kuila T, Mishra AK, Khanra P, Kim NH, Lee JH. Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale. 2013; 5(1):52–71.

    Article  Google Scholar 

  14. Pei S, Cheng H-M. The reduction of graphene oxide. Carbon. 2012; 50(9):3210–28.

    Article  Google Scholar 

  15. Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem. 2006; 384(3):620–30.

    Article  Google Scholar 

  16. Lomas H, Massignani M, Abdullah KA, Canton I, Lo Presti C, MacNeil S, Du J, Blanazs A, Madsen J, Armes SP, Lewis AL, Battaglia G. Non-cytotoxic polymer vesicles for rapid and efficient intracellular delivery. Faraday Discuss. 2008; 139(1): 143–59.

    Article  Google Scholar 

  17. Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci. 2004; 29(12):1173–222.

    Article  Google Scholar 

  18. Zhang X-Z, Yang Y-Y, Chung T-S, Ma K-X. Preparation and characterization of fast response macroporous poly(Nisopropylacrylamide) hydrogels. Langmuir. 2001; 17(20):6094–9.

    Article  Google Scholar 

  19. Zareie HM, Bulmus EV, Gunning AP, Hoffman AS, Piskin E, Morris VJ. Investigation of a stimuli-responsive copolymer by atomic force microscopy. Polymer. 2000; 41(18):6723–7.

    Article  Google Scholar 

  20. Sun S, Wu PA. one-step strategy for thermal-and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. J Mater Chem. 2011; 21(12):4095–7.

    Article  Google Scholar 

  21. Alzari V, Nuvoli D, Scognamillo S, Piccinini M, Gioffredi E, Malucelli G, Marceddu S, Sechi M, Sanna V, Mariani A. Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization. J Mater Chem. 2011; 21(24):8727–33.

    Article  Google Scholar 

  22. Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules. 2010; 43(16):6515–30.

    Article  Google Scholar 

  23. Qi J, Lv W, Zhang G, Zhang F, Fan X. Poly(Nisopropylacrylamide) on two-dimensional graphene oxide surfaces. Polym Chem. 2012; 3(3):621–4.

    Article  Google Scholar 

  24. Pan Y, Bao H, Sahoo NG, Wu T, Li L. Water-soluble poly(Nisopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery. Adv Funct Mater. 2011; 21(14): 2754–63.

    Article  Google Scholar 

  25. Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, Cui D. Biocompatibility of graphene oxide. Nanoscale Res Lett. 2011; 6(1):8.

    Google Scholar 

  26. Wu S, Zhao X, Cui Z, Zhao C, Wang Y, Du L, Li Y. Cytotoxicity of graphene oxide and graphene oxide loaded with doxorubicin on human multiple myeloma cells. Int J Nanomedicine. 2014; 9(1):1413–21.

    Google Scholar 

  27. Hu X, Zhou Q. Health and ecosystem risks of graphene. Chem Rev. 2013; 113(5):3815–35.

    Article  Google Scholar 

  28. Chang Y, Yang S-T, Liu J-H, Dong E, Wang Y, Cao A, Liu Y, Wang H. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett. 2011; 200(3):201–10.

    Article  Google Scholar 

  29. Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013; 9(12):9243–57.

    Article  Google Scholar 

  30. Liu K, Zhang J-J, Cheng F-F, Zheng T-T, Wang C, Zhu J-J. Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem. 2011; 21(32):12034–40.

    Article  Google Scholar 

  31. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev. 2012; 112(11):6156–214.

    Article  Google Scholar 

  32. Depan D, Shah J, Misra RDK. Controlled release of drug from folate-decorated and graphene mediated drug delivery system: Synthesis, loading efficiency, and drug release response. Mater Sci Eng C. 2011; 31(7):1305–12.

    Article  Google Scholar 

  33. Kang A, Seo HI, Chung BG, Lee SH. Concave microwell arraymediated three-dimensional tumor model for screening anticancer drug-loaded nanoparticles. Nanomedicine. 2015; 11(5):1153–61.

    Article  Google Scholar 

  34. Seo HI, Cho AN, Jang J, Kim DW, Cho SW, Chung BG. Thermo-responsive polymeric nanoparticles for enhancing neuronal differentiation of human induced pluripotent stem cells. Nanomedicine. 2015; 11(7):1861–9.

    Article  Google Scholar 

  35. Weissleder R. Clearer vision for in vivo imaging. Nat Biotechnol. 2001; 19(4):316–7.

    Article  Google Scholar 

  36. Kim H, Lee D, Kim J, Kim TI, Kim WJ. Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano. 2013; 7(8):6735–46.

    Article  Google Scholar 

  37. Lu N, Liu J, Li J, Zhang Z, Weng Y, Yuan B, Yang K, Ma Y. Tunable dual-stimuli response of a microgel composite consisting of reduced graphene oxide nanoparticles and poly(Nisopropylacrylamide) hydrogel microspheres. J Mater Chem B. 2014; 2(24):3791–8.

    Article  Google Scholar 

  38. Wan H, Zhang Y, Liu Z, Xu G, Huang G, Ji Y, Xiong Z, Zhang Q, Dong J, Zhang W, Zou H. Facile fabrication of a nearinfrared responsive nanocarrier for spatiotemporally controlled chemo-photothermal synergistic cancer therapy. Nanoscale. 2014; 6(15):8743–53.

    Article  Google Scholar 

  39. Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev. 2013; 42(2):530–47.

    Article  Google Scholar 

  40. Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials. 2011; 32(3):8555–61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong Geun Chung.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, H.I., Cheon, Y.A. & Chung, B.G. Graphene and thermo-responsive polymeric nanocomposites for therapeutic applications. Biomed. Eng. Lett. 6, 10–15 (2016). https://doi.org/10.1007/s13534-016-0214-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-016-0214-6

Keywords

Navigation