Skip to main content

Advertisement

Log in

Design, development, and drug delivery applications of graphene polymeric nanocomposites and bionanocomposites

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Recently, nanotechnology has significantly influenced nanomedicine and drug development, and conveyance. From the polymeric nanoarchitectural and bionanoarchitectural perspective, nanomedicine entails the application of emerging science and technology of these nanomaterials (NM) for diagnosis, treatment, and inhibition of diseases while attaining excellent health care. Graphene (GN) has undergone versatile studies as drug delivery system because of their inherent outstanding attributes and relatively minimal/zero-toxic dispositions in biologically affiliated systems. In previous decades, significant efforts have focused on smart drug delivery feasibilities of graphene and graphene-oriented materials. Thus, this elucidation elaborates newly emerging applications of graphene-based polymeric nanoarchitectural and bionanoarchitectural materials for pharmaceutical applications especially in targeted drugs conveyance effective for cardiovascular, anti-cancer, anti-microbial, anti-inflammatory, and anti-diabetic applications. Furthermore, future perspectives and challenges are also elucidated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References  

  1. D. Plachá, J. Jampilek, Graphenic Materials for biomedical applications. Nanomaterials 9, 1758 (2019)

    Google Scholar 

  2. K. Janani, D.J. Thiruvadigal, Density functional study on covalent functionalization of zigzag graphene nanoribbon through L-phenylalanine and boron doping: effective nanocarriers in drug delivery applications. Appl. Surf. Sci. 449, 815–822 (2018)

    CAS  Google Scholar 

  3. S.M. Chowdhury, C. Surhland, Z. Sanchez, P. Chaudhary, M.A.S. Kumar, S. Lee, L.A. Pena, M. Waring, B. Sitharaman, M. Naidu, Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme. Nanomedicine 11, 109–118 (2015)

    CAS  Google Scholar 

  4. J. Lamb, E. Fischer, M. Rosillo-Lopez, C.G. Salzmann, J.P. Holland, Multi-functionalised graphene nanoflakes as tumour targeting theranostic drug-delivery vehicles. Chem. Sci. 10, 8880–8888 (2019)

    CAS  Google Scholar 

  5. Y.L. Chen, Y.K. Yang, Y.W. Xiang, P. Singh, J.L. Feng, S.F. Cui, A. Carrier, K. Oakes, T.G. Luan, X. Zhang, Multifunctional graphene-oxide-reinforced dissolvable polymeric microneedles for transdermal drug delivery. ACS Appl. Mater. Interfaces 12, 352–360 (2020)

    CAS  Google Scholar 

  6. K. Matulewicz, L. Kazmierski, M. Wisniewski, S. Roszkowski, K. Roszkowski, O. Kowalczyk, A. Roy, B. Tylkowski, A. Bajek, Ciprofloxacin and graphene oxide combination—new face of a known drug. Materials 13, 4224 (2020)

    CAS  Google Scholar 

  7. Y.J. Yun, H.W. Wu, J. Gao, W. Dai, L.H. Deng, O. Lv, Y. Kong, Facile synthesis of Ca 2+-crosslinked sodium alginate/graphene oxide hybrids as electro- and pH-responsive drug carrier. Mater. Sci. Eng. C Mater. Biol. Appl. 108, 110380 (2020)

    CAS  Google Scholar 

  8. Y.X. Liu, R. Song, X.H. Zhang, D.W. Zhang, Enhanced antimicrobial activity and pH-responsive sustained release of chitosan/poly (vinyl alcohol)/graphene oxide nanofibrous membrane loading with allicin. Int. J. Biol. Macromol. 161, 1405–1413 (2020)

    CAS  Google Scholar 

  9. M.Y. Lan, Y.B. Hsu, M.C. Lan, J.P. Chen, Y.J. Lu, Polyethylene glycol-boated graphene oxide loaded with erlotinib as an effective therapeutic agent for treating nasopharyngeal cancer cells. Int. J. Nanomed. 15, 7569–7582 (2020)

    CAS  Google Scholar 

  10. F. Kheiltash, K. Parivar, N.H. Roodbari, B. Sadeghi, A. Badiei, Effects of 8-hydroxyquinoline-coated graphene oxide on cell death and apoptosis in MCF-7 and MCF-10 breast cell lines. Iran. J. Basic Med. Sci. 23, 871–878 (2020)

    Google Scholar 

  11. L.H. Wang, J.Y. Liu, L. Sui, P.H. Zhao, H.D. Ma, Z. Wei, Y.L. Wang, Folate-modified graphene oxide as the drug delivery system to load temozolomide. Curr. Pharm. Biotechnol. 21, 1088–1098 (2020)

    CAS  Google Scholar 

  12. L. Assy, A. Gemeay, S. Gomaa, M.A. Aldubayan, M.L. Salem, Impact of graphene oxide nano sheets loaded with chemotherapeutic drug on tumor cells. J. Nanopart. Res. 22, 79 (2020)

    CAS  Google Scholar 

  13. Y.F. Wang, G.P. Sun, Y.Y. Gong, Y.Y. Zhang, X.F. Liang, L.Q. Yang, Functionalized folate-modified graphene oxide/PEI siRNA nanocomplexes for targeted ovarian cancer gene therapy. Nanoscale Res. Lett. 15, 57 (2020)

    CAS  Google Scholar 

  14. T.C. Lu, Z.Z. Nong, L.Y. Wei, M. Wei, G. Li, N.N. Wu, C. Liu, B.L. Tang, Q.X. Qin, X.H. Li et al., Preparation and anti-cancer activity of transferrin/folic acid double-targeted graphene oxide drug delivery system. J. Biomater. Appl. 35, 15–27 (2020)

    CAS  Google Scholar 

  15. N. Ezzati, A.R. Mahjoub, S. Shokrollahi, A. Amiri, A.A. Shahrnoy, Novel biocompatible amino acids-functionalized threedimensional graphene foams: As the attractive and promising cisplatin carriers for sustained release goals. Int. J. Pharm. 589, 119857 (2020)

    CAS  Google Scholar 

  16. Y.J. Lu, C.W. Lin, H.W. Yang, K.J. Lin, S.P. Wey, C.L. Sun, K.C. Wei, T.C. Yen, C.I. Lin, C.C.M. Ma et al., Biodistribution of PEGylated graphene oxide nanoribbons and their application in cancer chemo-photothermal therapy. Carbon 74, 83–95 (2014)

    CAS  Google Scholar 

  17. A. Pourjavadi, S. Asgari, S.H. Hosseini, Graphene oxide functionalized with oxygen -rich polymers as a pH -sensitive carrier for co -delivery of hydrophobic and hydrophilic drugs. J. Drug Deliv. Sci. Technol. 56Pt A, 101542 (2020)

    Google Scholar 

  18. M. Kazempour, L. Edjlali, A. Akbarzadeh, S. Davaran, S.S. Farid, Synthesis and characterization of dual pH-and thermoresponsive graphene-based nanocarrier for effective anticancer drug delivery. J. Drug Deliv. Sci. Technol. 54, 101158 (2019)

    CAS  Google Scholar 

  19. M.S. Foroushani, R.K. Shervedani, A. Kefayat, M. Torabi, F. Ghahremani, F. Yaghoobi, Near-infrared, light-triggered, ondemand anti-inflammatories and antibiotics folate-graphene chelate manganese nanoparticles as a theranostic system for colon cancer MR imaging and drug delivery: In-vivo examinations. J. Drug Deliv. Sci. Technol. 54, 101223 (2019)

    Google Scholar 

  20. A.K. Mahanta, D.K. Patel, P. Maiti, Nanohybrid scaffold of chitosan and functionalized graphene oxide for controlled drug delivery and bone regeneration. ACS Biomater. Sci. Eng. 5, 5139–5149 (2019)

    CAS  Google Scholar 

  21. S. Izadi, A. Moslehi, H. Kheiry, F.K. Kiani, A. Ahmadi, A. Masjedi, S. Ghani, B. Rafiee, V. Karpisheh, F. Hajizadeh et al., Codelivery of HIF-1 siRNA and Dinaciclib by carboxylated graphene oxide-trimethyl chitosan-hyaluronate nanoparticles significantly suppresses cancer cell progression. Pharm. Res. 37, 196 (2020)

    CAS  Google Scholar 

  22. F. Nasrollahi, B. Sana, D. Paramelle, S. Ahadian, A. Khademhosseini, S. Lim, Incorpora-tion of graphene quantum dots, iron, and doxorubicin in/on ferritin nanocages for bimodal imag-ing and drug delivery. Adv. Ther. 3, 1900183 (2020)

    Google Scholar 

  23. S. Karimi, H. Namazi, Simple preparation of maltose-functionalized dendrimer/graphene quantum dots as a pH-sensitive biocompatible carrier for targeted delivery of doxorubicin. Int. J. Biol. Macromol. 156, 648–659 (2020)

    CAS  Google Scholar 

  24. X.X. Yao, X.X. Niu, K.X. Ma, P. Huang, J. Grothe, S. Kaskel, Y.F. Zhu, Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for con-trolled drug delivery, magnetic hyperthermia, and photothermal therapy. Small 13, 1602225 (2017)

    Google Scholar 

  25. Z.G. Liu, J. He, T.Y. Zhu, C. Hu, R.N. Bo, A. Wusiman, Y.L. Hu, D.Y. Wang, Lentinan-functionalized graphene oxide is an effective antigen delivery system that modulates innate immunity and improves adaptive immunity. ACS Appl. Mater. Interfaces 12, 39014–39023 (2020)

    CAS  Google Scholar 

  26. A.S. Abdel-Bary, D.A. Tolan, M.Y. Nassar, T. Taketsugu, A.M. El-Nahas, Chitosan, magnetite, silicon dioxide, and graphene oxide nanocomposites: Synthesis, characterization, efficiency as cisplatin drug delivery, and DFT calculations. Int. J. Biol. Macromol. 154, 621–633 (2020)

    CAS  Google Scholar 

  27. M. Pooresmaeil, S. Javanbakht, S.B. Nia, H. Namazi, Carboxymethyl cellulose/mesoporous magnetic graphene oxide as a safe and sustained ibuprofen delivery bio-system: synthesis, characterization, and study of drug release kinetic. Colloids Surf. A Physicochem. Eng. Asp. 594, 124662 (2020)

    CAS  Google Scholar 

  28. A. Pourjavadi, M. Kohestanian, M. Yaghoubi, Poly(glycidyl methacrylate)-coated magnetic graphene oxide as a highly efficient nanocarrier: preparation, characterization, and targeted DOX delivery. New J. Chem. 43, 18647–18656 (2019)

    CAS  Google Scholar 

  29. Z. Rao, H. Ge, L. Liu et al., Carboxymethyl cellulose modified graphene oxide as pH-sensitive drug delivery system. Int J Biol Macromol. 107, 1184–1192 (2018)

    CAS  Google Scholar 

  30. L. Feng, X. Yang, X. Shi et al., Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small 9(11), 1989–1997 (2013)

    CAS  Google Scholar 

  31. M.L. Salem, A. Gemeay, S. Gomaa, M.A. Aldubayan, L. Assy, Superparamagnetic graphene oxide/magnetite nanocomposite delivery system for doxorubicin-induced distinguished tumor cell cycle arrest and apoptosis. J. Nanoparticle Res. 22, 219 (2020)

    CAS  Google Scholar 

  32. Y.F. Yang, F.Y. Meng, X.H. Li, N.N. Wu, Y.H. Deng, L.Y. Wei, X.P. Zeng, Magnetic graphene oxide-Fe3O4-PANI nanoparticle adsorbed platinum drugs as drug delivery systems for cancer therapy. J. Nanosci. Nanotechnol. 19, 7517–7525 (2019)

    CAS  Google Scholar 

  33. F. Farjadian, S. Ghasemi, Z. Andami, B. Tamami, Thermo-responsive nanocarrier based on poly (N-isopropylacrylamide) serving as a smart doxorubicin delivery system. Iranian Polymer J. 29(3), 197–207 (2020)

    CAS  Google Scholar 

  34. L.H. Wang, L. Sui, P.H. Zhao, H.D. Ma, J.Y. Liu, Z. Wei, Z.J. Zhan, Y.L. Wang, A composite of graphene oxide and iron oxide nanoparticles for targeted drug delivery of temozolomide. Pharmazie 75, 313–317 (2020)

    CAS  Google Scholar 

  35. B. Zhang, Q.L. Yu, Y. Liu, Alternating magnetic field controlled targeted drug delivery based on graphene oxide-grafted nanosupramolecules. Chem. Eur. J. 26, 13698–13703 (2020)

    CAS  Google Scholar 

  36. E. Quagliarini, R. Di Santo, D. Pozzi, P. Tentori, F. Cardarelli, G. Caracciolo, Mechanistic insights into the release of doxorubicin from graphene oxide in cancer cells. Nanomaterials 10, 1482 (2020)

    CAS  Google Scholar 

  37. Z.X. Tu, E.S. Donskyi, H.S. Qiao, Z.L. Zhu, W.E.S. Unger, C.P.R. Hackenberger, W. Chen, M. Adeli, R. Haag, Graphene oxide-cyclic R10 peptide nuclear translocation nanoplatforms for the surmounting of multiple-drug resistance. Adv. Funct. Mater. 30, 2000933 (2020)

    CAS  Google Scholar 

  38. X. Huang, J. Chen, W. Wu, W.B. Yang, B.L. Zhong, X.C. Qing, Z.W. Shao, Delivery of MutT homolog 1 inhibitor by functionalized graphene oxide nanoparticles for enhanced chemo-photodynamic therapy triggers cell death in osteosarcoma. Acta. Biomater. 109, 229–243 (2020)

    CAS  Google Scholar 

  39. M. Zhang, F. Wu, W. Wang, J. Shen, N. Zhou, C. Wu, Multifunctional nanocomposites for targeted, photothermal, and chemotherapy. Chemi. Mater. 31(6), 1847–1859 (2019)

    CAS  Google Scholar 

  40. S. De, K. Patra, D. Ghosh et al., Tailoring the efficacy of multifunctional biopolymeric graphene oxide quantum dot-based nanomaterial as nanocargo in cancer therapeutic application. ACS Biomater. Sci. Eng. 4(2), 514–531 (2018)

    CAS  Google Scholar 

  41. D. Li, M. Deng, Z. Yu et al., Biocompatible and stable GO-coated Fe3O4 nanocomposite: a robust drug delivery carrier for simultaneous tumor MR imaging and targeted therapy. ACS Biomater. Sci. Eng. 4(6), 2143–2154 (2018)

    CAS  Google Scholar 

  42. A.D. Chowdhury, A.B. Ganganboina, Y.-C. Tsai, H.-C. Chiu, R.-A. Doong, Multifunctional GQDs-Concanavalin A@ Fe3O4 nanocomposites for cancer cells detection and targeted drug delivery. Anal. Chim. Acta. 1027, 109–120 (2018)

    Google Scholar 

  43. N.A. Hussien, N. Işıklan, M. Türk, Aptamer-functionalized magnetic graphene oxide nanocarrier for targeted drug delivery of paclitaxel. Mater. Chem. Phys. 211, 479–488 (2018)

    CAS  Google Scholar 

  44. P. Gong, S. Ji, J. Wang et al., Fluorescence-switchable ultrasmall fluorinated graphene oxide with high near-infrared absorption for controlled and targeted drug delivery. Chem. Eng. J. 348, 438–446 (2018)

    CAS  Google Scholar 

  45. K. Ratajczak, M. Stobiecka, Ternary interactions and energy transfer between fluorescein isothiocyanate, adenosine triphosphate, and graphene oxide nanocarriers. J. Phys. Chem. B. 121(28), 6822–6830 (2017)

    CAS  Google Scholar 

  46. Prakash Kumar Palai, Aparna Mondal, Bhandra Kanti Bhakraborti, Indranil Banerjee, Kunal Pal, V. Shanmuga Sharan Rathnam. J. Cluster Sci. 30, 1565–1582 (2019)

  47. S. Kesavan, K. Meena, R. Dhakshinamoorthy, Bioactive polysaccharides based graphene oxide nanoparticle as a promising carrier for anticancer drug delivery. Biointerface Res. Appl. Chem 12, 3429–3445 (2022)

    CAS  Google Scholar 

  48. N. Alipour, H. Namazi, Chelating ZnO-dopamine on the surface of graphene oxide and its application as pH-responsive and antibacterial nanohybrid delivery agent for doxorubicin. Mater Sci. Eng. C Mater. Biol. Appl. 108, 110459 (2020)

    CAS  Google Scholar 

  49. Z.E. Qi, J. Shi, Z. Zhang, Y.C. Cao, J.G. Li, S.K. Cao, PEGylated graphene oxide-capped gold nanorods/silica nanoparticles as multifunctional drug delivery platform with enhanced near-infrared responsiveness. Mater. Sci. Eng. C Mater. Biol. Appl. 104, 109889 (2019)

    CAS  Google Scholar 

  50. Z.E. Qi, J. Shi, B.B. Zhu, J.G. Li, S.K. Cao, Gold nanorods/graphene oxide nanosheets immobilized by polydopamine for efficient remotely triggered drug delivery. J. Mater. Sci. 55, 14530–14543 (2020)

    CAS  Google Scholar 

  51. S. Dhanavel, T.A. Revathy, T. Sivaranjani, K. Sivakumar, P. Palani, V. Narayanan, A. Stephen, 5-Fluorouracil and curcumin co-encapsulated chitosan/reduced graphene oxide nanocomposites against human colon cancer cell lines. Polym. Bull. 77, 213–233 (2020)

    CAS  Google Scholar 

  52. Y.J. Liu, X.G. Lv, S.L. Xia, B.J. Hao, X.Y. Huang, P. Shi, PEGylated graphene oxide as a nanocarrier of the disulfide prodrug of podophyllotoxin for cancer therapy. J. Nanoparticle Res. 22, 281 (2020)

    CAS  Google Scholar 

  53. A. Tas, N.K. Cakmak, Synthesis of PEGylated nanographene oxide as a nanocarrier for docetaxel drugs and anticancer activity on prostate cancer cell lines. Hum. Exp. Toxicol. 40, 172–182 (2021)

    CAS  Google Scholar 

  54. S. Dhanavel, P. Praveena, V. Narayanan, A. Stephen, Chitosan/reduced graphene oxide/Pd nanocomposites for co-delivery of 5-fluorouracil and curcumin towards HT-29 colon cancer cells. Polym. Bull. 77, 5681–5696 (2020)

    CAS  Google Scholar 

  55. P.K. Palai, A. Mondal, C.K. Chakraborti, I. Banerjee, K. Pal, V.S.S. Rathnam, Doxorubicin loaded green synthesized nanoceria decorated functionalized graphene nanocomposite for cancer-specific drug release. J. Clust. Sci. 30, 1565–1582 (2019)

    CAS  Google Scholar 

  56. G. Singh, B.P. Nenavathu, K. Imtiyaz, M.M.A. Rizvi, Fabrication of chlorambucil loaded graphene-oxide nanocarrier and its application for improved antitumor activity. Biomed. Pharmacother. 129, 110443 (2020)

    CAS  Google Scholar 

  57. C. Weaver, J. LaRosa, X. Luo, T. Tracy, Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS NANO 8, 1834–1843 (2014)

    CAS  Google Scholar 

  58. M. Karimi, M. Eslami, P. Sahandi-Zangabad et al., pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8(5), 696–716 (2016)

    CAS  Google Scholar 

  59. A. Roointan, J. Farzanfar, S. Mohammadi-Samani, A. Behzad- Behbahani, F. Farjadian, Smart pH responsive drug delivery system based on poly (HEMA-co-DMAEMA) nanohydrogel. Int. J. Pharm. 552(1–2), 301–311 (2018)

    CAS  Google Scholar 

  60. N.S. Tehrani, M. Masoumi, F. Chekin, M.S. Baei, Nitrogen doped porous reduced graphene oxide hybrid as a nanocarrier of imatinib anticancer drug. Russ. J. Appl. Chem. 93, 1221–1228 (2020)

    CAS  Google Scholar 

  61. T. Kavitha, S.I.H. Abdi, S.-Y. Park, pH-sensitive nanocargo based on smart polymer functionalized graphene oxide for site-specific drug delivery. Phys. Chem. Chem. Phys. 15(14), 5176–5185 (2013)

    CAS  Google Scholar 

  62. C. Wang, B. Chen, M. Zou, G. Cheng, Cyclic RGD-modified chitosan/graphene oxide polymers for drug delivery and cellular imaging. Colloids Surf B Biointerfaces. 122, 332–340 (2014)

    CAS  Google Scholar 

  63. M. Kazempour, H. Namazi, A. Akbarzadeh, R. Kabiri, Synthesis and characterization of PEG-functionalized graphene oxide as an effective pH-sensitive drug carrier. Artif. Cells Nanomed. Biotechnol. 47(1), 90–94 (2019)

    CAS  Google Scholar 

  64. X. Pei, Z. Zhu, Z. Gan, J. Chen, X. Zhang, X. Cheng, Q. Wan, J. Wang, PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci. Rep. 10, 1–15 (2020)

    Google Scholar 

  65. L. Feng, K. Li, X. Shi, M. Gao, J. Liu, Z. Liu, Smart pH-responsive nanocarriers based on nano-graphene oxide for combined chemo-and photothermal therapy overcoming drug resistance. Adv. Healthcare Mater. 3(8), 1261–1271 (2014)

    CAS  Google Scholar 

  66. Z. Wang, L. Ciacchi, G. Wei, Recent advances in the synthesis of graphene-based nanomaterials for controlled drug delivery. Appl. Sci. 7, 1175 (2017)

    Google Scholar 

  67. H.F. Gao, W.L. Yang, K. Min, L.S. Zha, C.C. Wang, S.K. Fu, Thermosensitive poly(n-isopropylacrylamide) nanocapsules with controlled permeability. Polymer 46, 1087–1093 (2005)

    CAS  Google Scholar 

  68. Z.S. Al-Ahmady, W.T. Al-Jamal, J.V. Bossche, T.T. Bui, A.F. Drake, A.J. Mason, K. Kostarelos, Lipid-peptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo. ACS Nano 6, 9335–9346 (2012)

    CAS  Google Scholar 

  69. E. Ruiz-Hernandez, A. Baeza, M. Vallet-Regi, Smart drug delivery through DNA/magnetic nanoparticle gates. ACS Nano 5, 1259–1266 (2011)

    CAS  Google Scholar 

  70. N.Y. Rapoport, A.M. Kennedy, J.E. Shea, C.L. Scaife, K.H. Nam, Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J. Control. Release 138, 268–276 (2009)

    CAS  Google Scholar 

  71. Z.Y. Xiao, C.W. Ji, J.J. Shi, E.M. Pridgen, J. Frieder, J. Wu, O.C. Farokhzad, DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew. Chem. Int. Ed. 51, 11853–11857 (2012)

    CAS  Google Scholar 

  72. Q. Yan, J.Y. Yuan, Z.N. Cai, Y. Xin, Y. Kang, Y.W. Yin, Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. J. Am. Chem. Soc. 132, 9268–9270 (2010). (CrossRef)

    CAS  Google Scholar 

  73. E. Koren, A. Apte, A. Jani, V.P. Torchilin, Multifunctional pegylated 2c5-immunoliposomes containing ph-sensitive bonds and tat peptide for enhanced tumor cell internalization and cytotoxicity. J. Control. Release 160, 264–273 (2012)

    CAS  Google Scholar 

  74. E.Q. Song, W.Y. Han, C. Li, D. Cheng, L.R. Li, L.C. Liu, G.Z. Zhu, Y. Song, W.H. Tan, Hyaluronic acid-decorated graphene oxide nanohybrids as nanocarriers for targeted and ph-responsive anticancer drug delivery. ACS Appl. Mater. Interfaces 6, 11882–11890 (2014)

    CAS  Google Scholar 

  75. C. Wang, B.B. Chen, M.J. Zou, G. Cheng, Cyclic rgd-modified chitosan/graphene oxide polymers for drug delivery and cellular imaging. Colloid. Surf. B 122, 332–340 (2014)

    CAS  Google Scholar 

  76. Q.X. Pan, Y. Lv, G.R. Williams, L. Tao, H.H. Yang, H.Y. Li, L.M. Zhu, Lactobionic acid and carboxymethyl chitosan functionalized graphene oxide nanocomposites as targeted anticancer drug delivery systems. Carbohydr. Polym. 151, 812–820 (2016)

    CAS  Google Scholar 

  77. M.H. Xiong, Y. Bao, X.Z. Yang, Y.C. Wang, B.L. Sun, J. Wang, Lipase-sensitive polymeric triple-layered nanogel for “on-demand” drug delivery. J. Am. Chem. Soc. 134, 4355–4362 (2012)

    CAS  Google Scholar 

  78. T.Y. Jiang, W.J. Sun, Q.W. Zhu, N.A. Burns, S.A. Khan, R. Mo, Z. Gu, Furin-mediated sequential delivery of anticancer cytokine and small-molecule drug shuttled by graphene. Adv. Mater. 27, 1021–1028 (2015)

    CAS  Google Scholar 

  79. J.B. Song, X.Y. Yang, O. Jacobson, L.S. Lin, P. Huang, G. Niu, Q.J. Ma, X.Y. Chen, Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano 9, 9199–9209 (2015)

    CAS  Google Scholar 

  80. D.H. Han, X. Tong, Y. Zhao, Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation. Langmuir 28, 2327–2331 (2012)

    CAS  Google Scholar 

  81. J. Dai, S.D. Lin, D. Cheng, S.Y. Zou, X.T. Shuai, Interlayer-crosslinked micelle with partially hydrated core showing reduction and ph dual sensitivity for pinpointed intracellular drug release. Angew. Chem. Int. Ed. 50, 9404–9408 (2011)

    CAS  Google Scholar 

  82. A. Baeza, E. Guisasola, E. Ruiz-Hernandez, M. Vallet-Regi, Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem. Mater. 24, 517–524 (2012)

    CAS  Google Scholar 

  83. S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013)

    CAS  Google Scholar 

  84. R. Nahire, S. Paul, M.D. Scott, R.K. Singh, W.W. Muhonen, J. Shabb, K.N. Gange, D.K. Srivastava, K. Sarkar, S. Mallik, Ultrasound enhanced matrix metalloproteinase-9 triggered release of contents from echogenic liposomes. Mol. Pharm. 9, 2554–2564 (2012)

    CAS  Google Scholar 

  85. X.J. Lee, H.N. Lim, N.S.K. Gowthaman, M.B.A. Rahman, C.A.C. Abdullah, K. Muthoosamy, In-situ surface functionalization of superparamagnetic reduced graphene oxide—Fe3O4 nanocomposite via Ganoderma lucidum extract for targeted cancer therapy application. Appl. Surf. Sci. 512, 145738 (2020)

    CAS  Google Scholar 

  86. H. Li, Y.L. Jia, C.L. Liu, Pluronic® F127 stabilized reduced graphene oxide hydrogel for transdermal delivery of ondansetron: Ex vivo and animal studies. Colloids Surf. B Biointerfaces 195, 111259 (2020)

    CAS  Google Scholar 

  87. V. Karthika, M.S. AlSalhi, S. Devanesan, K. Gopinath, A. Arumugam, M. Govindarajan, Chitosan overlaid Fe3O4/RGO nanocomposite for targeted drug delivery, imaging, and biomedical applications. Sci. Rep. 10, 18912 (2020)

    Google Scholar 

  88. K. Vinothini, N.K. Rajendran, R. Mariappan, R. Andy, N. Marraiki, A.M. Elgorban, A magnetic nanoparticle functionalized reduced graphene oxide-based drug carrier system for a chemo-photodynamic cancer therapy. New J. Chem. 44, 5265–5277 (2020)

    CAS  Google Scholar 

  89. W.J. Cao, L. He, W.D. Cao, X.B. Huang, K. Jia, J.Y. Dai, Recent progress of graphene oxide as a potential vaccine carrier and adjuvant. Acta Biomater. 112, 14–28 (2020)

    CAS  Google Scholar 

  90. F. Farjadian, S. Abbaspour, M.A.A. Sadatlu, S. Mirkiani, A. Ghasemi, M. Hoseini-Ghahfarokhi, N. Mozaffari, M. Karimi, M.R. Hamblin, Recent developments in graphene and graphene oxide: properties, synthesis, and modifications: a review. Chem. Select 5, 10200–10219 (2020)

    CAS  Google Scholar 

  91. M. Li, T. Chen, J.J. Gooding, J. Liu, Review of carbon and graphene quantum dots for sensing. ACS Sens. 4, 1732–1748 (2019)

    CAS  Google Scholar 

  92. T.K. Henna, K. Pramod, Graphene quantum dots redefine nanobiomedicine. Mater. Sci. Eng. C 110, 110651 (2020)

    CAS  Google Scholar 

  93. M. Kortel, B.D. Mansuriya, N. Vargas Santana, Z. Altintas, Graphene quantum dots as flourishing nanomaterials for bio-imaging, therapy development, and micro-supercapacitors. Micromachines 11, 866 (2020)

    Google Scholar 

  94. C.H. Zhao, X.B. Song, Y. Liu, Y.F. Fu, L.L. Ye, N. Wang, F. Wang, L. Li, M. Mohammadniaei, M. Zhang et al., Synthesis of graphene quantum dots and their applications in drug delivery. J. Nanobiotechnol. 18, 142 (2020)

    CAS  Google Scholar 

  95. E. Gulino, M. Citarrella, A. Maio, R. Scaffaro, An innovative route to prepare in situ graded crosslinked PVA graphene electrospun mats for drug release. Compos. A Appl. Sci. Manuf. 155, 106827 (2022)

    CAS  Google Scholar 

  96. S. Mohammadi, Babaei A Poly (vinyl alcohol)/chitosan/polyethylene glycol-assembled graphene oxide bio-nanocomposites as a prosperous candidate for biomedical applications and drug/food packaging industry. Int. J. Biol. Macromol. 201, 528–538 (2022)

    CAS  Google Scholar 

  97. S. Yousuf, H. Siddique, F. Arjmand, S. Tabassum, Functionalized graphene oxide loaded GATPT as rationally designed vehicle for cancer-targeted drug delivery. J. Drug Deliv. Sci. Technol. 71, 103281 (2022)

    CAS  Google Scholar 

  98. Z. Su, D. Sun, L. Zhang, M. He, Y. Jiang, B. Millar, P. Douglas, D. Mariotti, P. Maguire, D. Sun, Chitosan/silver nanoparticle/ graphene oxide nanocomposites with multi-drug re-lease, antimicrobial, and photothermal conversion functions. Materials 14, 2351 (2021)

    CAS  Google Scholar 

  99. X.T. Yu, S.Y. Sui, Y.X. He, C.H. Yu, Q. Peng, Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. Biomat. Adv. 212725 (2022)

  100. A. Talebi, S. Labbaf, F. Karimzadeh, E. Masaeli, M.H. Nasr Esfahani, Electroconductive graphene-containing polymeric patch: a promising platform for future cardiac repair. ACS Biomater. Sci. Eng. 6(7), 4214–4224 (2020)

    CAS  Google Scholar 

  101. D. Kaya, K. Küçükada, N. Alemdar, Modeling the drug release from reduced graphene oxide-reinforced hyaluronic acid/gelatin/poly (ethylene oxide) polymeric films. Carbohyd. Polym. 215, 189–197 (2019)

    CAS  Google Scholar 

  102. A.M. Itoo, S.L. Vemula, M.T. Gupta, M.V. Giram, S.A. Kumar, B. Ghosh, S. Biswas, Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J. Control. Release 350, 26–59 (2022)

    CAS  Google Scholar 

  103. Pandey, N., Bohra, B. S., Tiwari, H., Pal, M., Negi, P. B., Dandapat, A., ... & Sahoo, N. G. Development of biodegradable chitosan/graphene oxide nanocomposite via spray drying method for drug loading and delivery application. Journal of Drug Delivery Science and Technology 74, 103555 (2022)

  104. M. Hasanin, N.F. Taha, A.R. Abdou, L.H. Emara, Green decoration of graphene oxide Nano sheets with gelatin and gum Arabic for targeted delivery of doxorubicin. Biotechnol. Rep. 34, e00722 (2022)

    CAS  Google Scholar 

  105. J. Ma, Y. Liu, M. Chen, M. Li, S. Xu, H. Liu, Dual-sensitive GO-based self-assembly for the delivery of a hydrophobic anti-cancer drug. New J. Chem. 46(45), 21942–21949 (2022)

    CAS  Google Scholar 

  106. E. Avcu, F.E. Bastan, M. Guney, Y.Y. Avcu, M.A.U. Rehman, A.R. Boccaccini, Biodegradable polymer matrix composites containing graphene-related materials for antibacterial applications: A critical review. Acta Biomaterialia. (2022).

  107. A. Ebadati, B. Ghalandari, A. Hasanzadeh, M. Karimi, Curcumin/graphene quantum dot-loaded bacterial nanocellulose platform for drug delivery and wound dressing. Nano, 2250021. (2022).

  108. K. Nešović, V. Mišković-Stanković, Silver/poly (vinyl alcohol)/graphene hydrogels for wound dressing applications: understanding the mechanism of silver, antibacterial agent release. J. Vinyl Add. Tech. 28(1), 196–210 (2022)

    Google Scholar 

  109. Croitoru, A. M., Moroșan, A., Tihăuan, B., Oprea, O., Motelică, L., Trușcă, R., ... & Ficai, A. (2022). Novel graphene oxide/quercetin and graphene oxide/juglone nanostructured platforms as effective drug delivery systems with biomedical applications. Nanomaterials, 12(11), 1943.

  110. S.I. Jariya, A.A. Babu, T.S. Narayanan, E. Vellaichamy, K. Ravichandran, Development of a novel smart carrier for drug delivery: ciprofloxacin loaded vaterite/reduced graphene oxide/PCL composite coating on TiO2 nanotube coated titanium. Ceram. Int. 48(7), 9579–9594 (2022)

    Google Scholar 

  111. Budi, H. S., Ansari, M. J., Jasim, S. A., Abdelbasset, W. K., Bokov, D., Mustafa, Y. F., ... & Kazemnejadi, M. (2022). Preparation of antibacterial Gel/PCL nanofibers reinforced by dicalcium phosphate-modified graphene oxide with control release of clindamycin for possible application in bone tissue engineering. Inorganic Chemistry Communications, 139, 109336.

  112. J. Wu, Z. Qin, X. Jiang, D. Fang, Z. Lu, L. Zheng, J. Zhao, ROS-responsive PPGF nanofiber membrane as a drug delivery system for long-term drug release in attenuation of osteoarthritis. npj Regen. Med. 7(1), 1–15 (2022)

    CAS  Google Scholar 

  113. S.Y. Chae, R. Park, S.W. Hong, Surface-mediated high antioxidant and anti-inflammatory effects of astaxanthin-loaded ultrathin graphene oxide film that inhibits the overproduction of intracellular reactive oxygen species. Biomater. Res. 26(1), 1–18 (2022)

    Google Scholar 

  114. Y. Chen, W. Huang, Y. Dong, X. Yu, A. Mo, Q. Peng, Enhanced antibacterial activity of indocyanine green-loaded graphene oxide via synergistic contact killing, photothermal and photodynamic therapy. J. Biomed. Nanotechnol. 18(1), 185–192 (2022)

    CAS  Google Scholar 

  115. W.M. Kedir, E.M. Deresa, T.F. Diriba, Pharmaceutical and drug delivery applications of pectin and its modified nanocomposites. Heliyon, e10654. (2022).

  116. Y. Gao, Y. Chen, Y. Cao, A. Mo, Q. Peng, Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus. Eur. J. Med. Chem. 213, 113056 (2021)

    CAS  Google Scholar 

  117. C.Y. Foo, R.Z. Fu, Unravelling the potential of graphene in glioblastoma therapy. Mater. Sci. Eng., C 128, 112330 (2021)

    CAS  Google Scholar 

  118. P. Shende, N. Pathan, Potential of carbohydrate-conjugated graphene assemblies in biomedical applications. Carbohyd. Polym. 255, 117385 (2021)

    CAS  Google Scholar 

  119. J. Liu, J. Dong, T. Zhang, Q. Peng, Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J. Control. Release 286, 64–73 (2018)

    CAS  Google Scholar 

  120. Z.Q. Yang, D.T. Yang, K. Zeng, D.R. Li, L. Qin, Y.F. Cai, J. Jin, Simultaneous delivery of antimiR-21 and doxorubicin by graphene oxide for reducing toxicity in cancer therapy. ACS Omega 5, 14437–14443 (2020)

    CAS  Google Scholar 

  121. M.R. Younis, G. He, J. Lin, P. Huang, Recent advances on graphene quantum dots for bioimaging applications. Front. Chem. 8, 424 (2020)

    CAS  Google Scholar 

  122. B. Fortuni, T. Inose, M. Ricci, Y. Fujita, I. Van Zundert, A. Masuhara, E. Fron, H. Mizuno, L. Latterini, S. Rocha et al., Polymeric engineering of nanoparticles for highly efficient multifunctional drug delivery systems. Sci. Rep. 9, 2666 (2019)

    Google Scholar 

  123. S. Singh, A. Dhawan, S. Karhana, A. Bhat, A.K. Dinda, Quantum dots: an emerging tool for point-of-care testing. Micromachines 11, 1058 (2020)

    Google Scholar 

  124. M.X. Zhao, B.J. Zhu, The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Res. Lett. 11, 207 (2016)

    Google Scholar 

  125. A.A. Chis, C. Dobrea, C. Morgovan, A.M. Arseniu, L.L. Rus, A. Butuca, A.M. Juncan, M. Totan, A.L. Vonica-Tincu, G. Cormos et al., Applications and limitations of dendrimers in biomedicine. Molecules 25, 3982 (2020)

    CAS  Google Scholar 

  126. C.I. Idumah, Emerging advancements in xerogel polymeric bionanoarchitectures and applications. JCIS Open, 100073. (2022).

  127. D. Pentak, V. Kozik, A. Bak, P. Dybal, A. Sochanik, J. Jampilek, Methotrexate and cytarabine—Loaded nanocarriers for multidrug cancer therapy. Spectroscopic study. Molecules 21, 1689 (2016)

    Google Scholar 

  128. V. Kozik, A. Bak, D. Pentak, B. Hachula, K. Pytlakowska, M. Rojkiewicz, J. Jampilek, K. Sieron, J. Jazowiecka-Rakus, A. Sochanik, Derivatives of graphene oxide as potential drug carriers. J. Nanosci. Nanotechnol. 19, 2489–2492 (2019)

    CAS  Google Scholar 

  129. D. Placha, J. Jampilek, Graphenic materials for biomedical applications. Nanomaterials 9, 1758 (2019)

    CAS  Google Scholar 

  130. Z. Shi, Y. Zhou, T. Fan, Y. Lin, H. Zhang, L. Mei, Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Mater. Med. 1, 32–47 (2020)

    Google Scholar 

  131. N. Panwar, A.M. Soehartono, K.K. Chan, S. Zeng, G. Xu, J. Qu, P. Coquet, K.T. Yong, X. Chen, Nanocarbons for biology and medicine: sensing, imaging, and drug delivery. Chem. Rev. 119, 9559–9656 (2019)

    CAS  Google Scholar 

  132. M.H. Zainal-Abidin, M. Hayyan, G.C. Ngoh, W.F. Wong, From nanoengineering to nanomedicine: A facile route to enhance biocompatibility of graphene as a potential nano-carrier for targeted drug delivery using natural deep eutectic solvents. Chem. Eng. Sci. 195, 95–106 (2019)

    CAS  Google Scholar 

  133. I. Jendrzejewska, K. Knizek, J. Kubacki, J. Goraus, T. Goryczka, E. Pietrasik, Z. Barsova, J. Jampilek, B. Witkowska-Kita, Structure and properties of nano- and polycrystalline Mn-doped CuCr 2 Se 4 obtained by ceramic method and grain reduction. Mater. Res. Bull. 137, 111174 (2021)

    CAS  Google Scholar 

  134. T.D. Clemons, R. Singh, A. Sorolla, N. Chaudhari, A. Hubbard, K.S. Iyer, Distinction between active and passive targeting of nanoparticles dictate their overall therapeutic efficacy. Langmuir 34, 15343–15349 (2018)

    CAS  Google Scholar 

  135. T. Shukla, N. Upmanyu, S.P. Pandey, M.S. Sudheesh, Site-Specific Drug Delivery, Targeting, and Gene Therapy, in Nanoarchitectonics in Biomedicine. ed. by A.M. Grumezescu (Elsevier, Amsterdam, The Netherlands, 2019), pp.473–505

    Google Scholar 

  136. M.F. Attia, N. Anton, J. Wallyn, Z. Omran, T.F. Vandamme, An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 71, 1185–1198 (2019)

    CAS  Google Scholar 

  137. M. Zhang, S. Cheng, Y. Jin, N. Zhang, Y. Wang, Membrane engineering of cell membrane biomimetic nanoparticles for nanoscale therapeutics. Clin. Transl. Med. 11, e292 (2021)

    Google Scholar 

  138. H.X. Wang, D.M. Sun, N.N. Zhao, X.C. Yang, Y.Z. Shi, J.F. Li, Z.Q. Su, G. Wei, Thermo-sensitive graphene oxide-polymer nanoparticle hybrids: synthesis, characterization, biocompatibility and drug delivery. J. Mater. Chem. B 2, 1362–1370 (2014)

    CAS  Google Scholar 

  139. A.K. Swain, L. Pradhan, D. Bahadur, Polymer stabilized fe3o4-graphene as an amphiphilic drug carrier for thermo-chemotherapy of cancer. ACS Appl. Mater. Interfaces 7, 8013–8022 (2015)

    CAS  Google Scholar 

  140. X. Ma, Q.Y. Qu, Y. Zhao, Z. Luo, Y. Zhao, K.W. Ng, Y.L. Zhao, Graphene oxide wrapped gold nanoparticles for intracellular raman imaging and drug delivery. J. Mater. Chem. B 1, 6495–6500 (2013)

    CAS  Google Scholar 

  141. J.J. Shi, L. Wang, J. Zhang, R. Ma, J. Gao, Y. Liu, C.F. Zhang, Z.Z. Zhang, A tumor-targeting near-infrared laser-triggered drug delivery system based on go@ag nanoparticles for chemo-photothermal therapy and X-ray imaging. Biomaterials 35, 5847–5861 (2014)

    CAS  Google Scholar 

  142. X.X. Yao, X.X. Niu, K.X. Ma, P. Huang, J. Grothe, S. Kaskel, Y.F. Zhu, Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small 13, 1602225 (2017)

    Google Scholar 

  143. J. Bai, Y.W. Liu, X.E. Jiang, Multifunctional peg-go/cus nanocomposites for near-infrared chemo-photothermal therapy. Biomaterials 35, 5805–5813 (2014)

    CAS  Google Scholar 

  144. C.I. Idumah, J.H. Low, E.O. Emmanuel, Recently emerging trends in xerogel polymeric nanoarchitectures and multifunctional applications. Polym. Bull. 1–31. (2022).

  145. J.Q. Chen, H.Y. Liu, C.B. Zhao, G.Q. Qin, G.N. Xi, T. Li, X.P. Wang, T.S. Chen, One-step reduction and pegylation of graphene oxide for photothermally controlled drug delivery. Biomaterials 35, 4986–4995 (2014)

    CAS  Google Scholar 

  146. C.L. Weaver, J.M. La Rosa, X.L. Luo, X.T. Cui, Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano 8, 1834–1843 (2014)

    CAS  Google Scholar 

  147. Y.H. Park, S.Y. Park, I. In, Direct noncovalent conjugation of folic acid on reduced graphene oxide as anticancer drug carrier. J. Ind. Eng. Chem. 30, 190–196 (2015)

    CAS  Google Scholar 

  148. K.P. Liu, Y.M. Wang, H.M. Li, Y.X. Duan, A facile one-pot synthesis of starch functionalized graphene as nano-carrier for ph sensitive and starch-mediated drug delivery. Colloid. Surf. B 128, 86–93 (2015)

    CAS  Google Scholar 

  149. J.C. Qiu, R.B. Zhang, J.H. Li, Y.H. Sang, W. Tang, P.R. Gil, H. Liu, Fluorescent graphene quantum dots as traceable, ph-sensitive drug delivery systems. Int. J. Nanomed. 10, 6709–6724 (2015)

    CAS  Google Scholar 

  150. G.S. Wang, Y.Y. Ma, Z.Y. Wei, M. Qi, Development of multifunctional cobalt ferrite/graphene oxide nanocomposites for magnetic resonance imaging and controlled drug delivery. Chem. Eng. J. 289, 150–160 (2016)

    CAS  Google Scholar 

  151. X.J. Fan, G.Z. Jiao, L. Gao, P.F. Jin, X. Li, The preparation and drug delivery of a graphene-carbon nanotube-Fe3O4 nanoparticle hybrid. J. Mater. Chem. B 1, 2658–2664 (2013)

    CAS  Google Scholar 

  152. H.S. Jung, M.Y. Lee, W.H. Kong, I.H. Do, S.K. Hahn, Nano graphene oxide-hyaluronic acid conjugate for target specific cancer drug delivery. RSC Adv. 4, 14197–14200 (2014)

    CAS  Google Scholar 

  153. C.L. Huang, C.C. Huang, F.D. Mai, C.L. Yen, S.H. Tzing, H.T. Hsieh, Y.C. Lingd, J.Y. Chang, Application of paramagnetic graphene quantum dots as a platform for simultaneous dual-modality bioimaging and tumor-targeted drug delivery. J. Mater. Chem. B 3, 651–664 (2015)

    CAS  Google Scholar 

  154. S.M. Chowdhury, C. Surhland, Z. Sanchez, P. Chaudhary, M.A.S. Kumar, S. Lee, L.A. Pena, M. Waring, B. Sitharaman, M. Naidu, Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme. Nanomed. Nanotechnol. 11, 109–118 (2015)

    CAS  Google Scholar 

  155. H. Chen, Z.Y. Wang, S.F. Zong, L. Wu, P. Chen, D. Zhu, C.L. Wang, S.H. Xu, Y.P. Cui, Sers-fluorescence monitored drug release of a redox-responsive nanocarrier based on graphene oxide in tumor cells. ACS Appl. Mater. Interfaces 6, 17526–17533 (2014)

    CAS  Google Scholar 

  156. X.B. Zhao, L. Liu, X.R. Li, J. Zeng, X. Jia, P. Liu, Biocompatible graphene oxide nanoparticle-based drug delivery platform for tumor microenvironment-responsive triggered release of doxorubicin. Langmuir 30, 10419–10429 (2014)

    CAS  Google Scholar 

  157. T.J. Yin, J.Y. Liu, Z.K. Zhao, Y.Y. Zhao, L.H. Dong, M. Yang, J.P. Zhou, M.R. Huo, Redox sensitive hyaluronic acid-decorated graphene oxide for photothermally controlled tumor-cytoplasmselective rapid drug delivery. Adv. Funct. Mater. 27, 1604620 (2017)

    Google Scholar 

  158. Y.X. Tang, H. Hu, M.G. Zhang, J.B. Song, L.M. Nie, S.J. Wang, G. Niu, P. Huang, G.M. Lu, X.Y. Chen, An aptamer-targeting photoresponsive drug delivery system using “off-on” graphene oxide wrapped mesoporous silica nanoparticles. Nanoscale 7, 6304–6310 (2015)

    CAS  Google Scholar 

  159. H. Kim, D. Lee, J. Kim, T.I. Kim, W.J. Kim, Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano 7, 6735–6746 (2013)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Igwe Idumah.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idumah, C.I. Design, development, and drug delivery applications of graphene polymeric nanocomposites and bionanocomposites. emergent mater. 6, 777–807 (2023). https://doi.org/10.1007/s42247-023-00465-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00465-4

Keywords

Navigation