Skip to main content
Log in

Microfluidic platforms for the study of cancer metastasis

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Metastases many a time leave cancer patients untreatable and are one of the leading causes of death worldwide. Microfluidic platforms are arguably the most suitable for the study of cancer metastasis given its ability to mimic in vivo microenvironment of cancer tumor by manipulating its mechanical properties. This review discusses some applications of microfluidic platforms and their advantages for cancer biology and pathology. Studies of cancer metastasis conducted on its compositional steps enable us to elucidate elementary mechanisms through disease modeling. From that, communication and interaction of cancer cells, cellular metabolism related issues, and ultimately cancer drug discovery and delivery are manipulated on microfluidic platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2D:

two-dimensional

3D:

three-dimensional

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

HEC:

Human endothelial cell

hEGC:

Human embryonic germ cell

VEGF:

Vascular endothelial growth factor

References

  1. Boyle P, Levin B. World cancer report. IARC Sci Publ. 2008; 9.

  2. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002; 2(8):563–572.

    Article  Google Scholar 

  3. Paweletz, CP, Charboneau L, Liotta LA. Overview of metastasis assays. Curr Protoc Cell Biol. 2001; 19.1.1–9. doi: 10.1002/0471143030.cb1901s12

  4. Wang R, Xu J, Juliette L, Castileja A, Love J, Sung SY, Zhau HE, Goodwin TJ, Chung LWK. Three-dimensional co-culture models to study prostate cancer growth, progression and metastasis to bone. Semin Cancer Biol. 2005; 15:353–364.

    Article  Google Scholar 

  5. Keese CR, Bhawe K, Wegner J, Giaever I. Real time impedance assay to follow the invasive activities of metastatic cells in culture. BioTechniques. 2002; 33:842–850.

    Google Scholar 

  6. Boyden S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med. 1962; 115:453–466.

    Article  Google Scholar 

  7. Woodward JKL, Nichols CE, Rennie IG, Parsons MA, Murray AK, Sisley K. An in vitro assay to assess uveal melanoma invasion across endothelial and basement membrane barriers. Invest Ophth Vis Sci. 2002; 43:1708–1714.

    Google Scholar 

  8. Li Y, Zhu C. A modified Boyden chamber assay for tumor cell transendothelial migration in vitro. Clin Exp Metastas. 1999; 17(5):423–429.

    Article  Google Scholar 

  9. Albini A, Benelli R, Noonan DM, Brigati C. The “Chemoinvasion assay”: a tool to study tumor and endothelial cell invasion of basement membranes. Int J Dev Biol. 48:563–571.

  10. Shaw LM. Tumor cell invasion assays. Methods Mol Biol. 2005; 294:97–105.

    Google Scholar 

  11. Woo MMM, Salamanca CM, Minor A, Auersperg N. An improved assay to quantitate the invasiveness of cells in modified boyden chambers. In Vitro Cell Dev-An. 2007; 43(1):7–9

    Article  Google Scholar 

  12. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003; 24(24):4337–4351.

    Article  Google Scholar 

  13. Ifkovits JL, Burdick JA. Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 2007; 13(10):3563–3576.

    Article  Google Scholar 

  14. Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science. 2001; 294(5547):1708–1712.

    Article  Google Scholar 

  15. Jeong GS, Kwon GH, Kang AR, Jung BY, Park Y, Chung S, Lee SH. Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel. Biomed Microdevices. 2011; 13(4):712–723.

    Google Scholar 

  16. Sudo R, Chung S, Zervantonakis IK, Vickerman V, Toshimitsu Y, Griffith LG, Kamm RD. Transport-mediated angiogenesis in 3D epithelial coculture. FASEB J. 2009; 23(7):2155–2164.

    Article  Google Scholar 

  17. Chung S, Sudo R, Zervantonakis IK, Rimchala T, Kamm RD. Surface-treatment-induced three-dimensional capillary morphogenesis in a microfluidic platform. Adv Mater. 2009; 21(47):4863–4867.

    Article  Google Scholar 

  18. Kothapalli CR, van Veen E, de Valence S, Chung S, Zervantonakis Y, Gertler FB, Kamm RD. A high-throughput microfluidic assay to study axonal response to growth factor gradients. Lab Chip. 2011; 11(3):497–507.

    Article  Google Scholar 

  19. Shin Y, Jeon J, Jeong GS, Han S, Shin S, Lee S-H, Sudo R, Kamm RD, Chung S. in vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Lab Chip. 2011; 11(13):2175–2181.

    Article  Google Scholar 

  20. Volder RD, Kong HJ. Biomaterials for studies in cellular mechanotransduction. Tools Exploring Mechanobiology. 267–277.

  21. Beebe DJ, Mensing GA, Walker GM. Physics and applications of microfluidics in biology. Annu Rev Biomed Eng. 2002; 4:261–286.

    Article  Google Scholar 

  22. Beebe DJ, Moore JS, Yu Q, Liu RH, Kraft ML, Jo BH, Devadoss C. Microfludic tectonics: a comprehensive construction platform for microfluidic systems. P Natl Acad Sci USA. 2000; 97:13488–13493.

    Article  Google Scholar 

  23. Chung S, Sudo R, Vickerman V, Zervantonakis IK, Kamm RD. Microfluidic platform for studies of angiogenesis, cell migration, and cell-cell interactions. Ann Biomed Eng. 2010; 38:1164–1177.

    Article  Google Scholar 

  24. Sahai Erik. Mechanisms of cancer cell invasion. Curr Opin Genet Dev. 2005; 15(1):87–95.

    Article  Google Scholar 

  25. Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nature Reviews Molecular Cell Biology. 2006; 7:211–224.

    Article  Google Scholar 

  26. Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011; 147:992–1009.

    Article  Google Scholar 

  27. Hsu PP, Sabatini DM. Cancer cell metabolism: warburg and beyond. Cell. 2008; 134(5):703–707.

    Article  Google Scholar 

  28. Locasale JW, Cantley LC. Altered metabolism in cancer. BMC Biology. 2010; 8:88.

    Article  Google Scholar 

  29. Hoelzinger DB, Demuth T, Berens ME. Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst. 2007; 99:1583–1593.

    Article  Google Scholar 

  30. Semino CE, Kamn RD, Lauffenburger DA. Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow. Exp Cell Res. 2006; 312(3):289–298.

    Google Scholar 

  31. Song XY, Kong BH, Li D. A new tool for probing of cell-cell communication: human embryonic germ cells inducing apoptosis of SKOV3 ovarian cancer cells on a microfluidic chip. Biotechnol Lett. 2008; 30(9):1537–1543.

    Article  Google Scholar 

  32. Hsu TH, Xiao JL, Tsao YW, Kao YL, Huang SH, Liao WY, Lee CH. Analysis of the paracrine loop between cancer cells and fibroblasts using a microfluidic chip. Lab Chip. 2011; 11:1808–1814.

    Article  Google Scholar 

  33. Polacheck WJ, Charest JL, Kamn RD. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc Natl Acad Sci. 2011; 108:11115–11120.

    Article  Google Scholar 

  34. Haessler U, Teo JCM, Foretay D, Renaud P, Swartz MA. Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber. Integr Biol. 2012; 4:401–409.

    Article  Google Scholar 

  35. Jeong GS, Han SW, Shin YJ, Kwon GH, Kamn RD, Lee SH, Chung S. Sprouting angiogenesis under a chemical gradient regulated by interactions with an endothelial monolayer in a microfluidic platform. Anal Chem. 2011; 83:8454–9.17.

    Article  Google Scholar 

  36. Chung S, Sudo R, Mack PJ, Wan CR, Vickerman V, Kamm RD. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip. 2009; 9:269–275.

    Article  Google Scholar 

  37. Walsh CL, Babin BM, Kasinskas TW, Foster JA, McGarry MJ, Forbes NS. A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics. Lab Chip. 2009; 9(4):545–554.

    Article  Google Scholar 

  38. Liu XH, Kirschenbaum A, Yao S, Stearns ME, Holland JF, Claffey K, Levine AC. Upregulation of vascular endothelial growth factor by cobalt chloride-simulated hypoxia is mediated by persistent induction of cyclooxygenase-2 in a metastatic human prostate cancer cell line. Clin Exp Metastas. 1999; 17:687–694.

    Article  Google Scholar 

  39. Yuan Y, Hilliard G, Ferguson T, Millhorn DE. Cobalt inhibits the interaction between hypoxia-inducible factor-a and von hippellindau protein by direct binding to hypoxia-inducible factor-a. J Biol Chem. 2003; 278:15911–15916.

    Article  Google Scholar 

  40. Webster A, Dyer CE, Haswell SJ, Greenman J. A microfluidic device for tissue biopsy culture and interrogation. Anal Meth. 2010; 2:1005–1007.

    Article  Google Scholar 

  41. Duffy MJ, Crown J. A personalized approach to cancer treatment: how biomarkers can help. Clin Chem. 2008; 54(11):1770–1779.

    Article  Google Scholar 

  42. Eccles SA, Bo C, Court W. Cell migration/invasion assays ad their application in cancer drug discovery. Biotech Annu Rev. 2005; 11:391–421.

    Article  Google Scholar 

  43. Grist S, Yu LF, Chrostowski L, Cheung KC. Microfluidic cell culture systems with integrated sensors for drug screening. Proc of SPIE. 2012; 8251:825103–825112.

    Article  Google Scholar 

  44. Wu LY, Carlo DD, Lee LP. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomed Microdevices. 2008; 10:197–202.

    Article  Google Scholar 

  45. LaVan DA, McGuire T. Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol. 2003; 21(10):1184–1191.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, J., Shin, Y. & Chung, S. Microfluidic platforms for the study of cancer metastasis. Biomed. Eng. Lett. 2, 72–77 (2012). https://doi.org/10.1007/s13534-012-0055-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-012-0055-x

Keywords

Navigation