Skip to main content
Log in

Occupational and environmental impacts of indoor air pollutant for different occupancy: a review

  • Mini Review
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Introduction

Since an average human spends most of the time indoors (ranging from 85% to 90%), the understanding about ambient environment is very important. The indoor environment is majorly polluted from the indoor air pollutants like volatile organic carbon (VOC), semi-volatile organic carbon (SVOC), particulate matter, ozone, oxides of carbon and sulphur, heavy metals, biological contaminants and many more. There has been growing awareness about the adverse health effects of poor indoor air quality (IAQ) in the last two decades; researchers across the globe are performing various studies to assess the IAQ, and the situation in developing and the under-developing country is getting worse day by day due to unplanned and rapid growth.

Methodology

This work is an attempt to catalogue different types of indoor air pollutants in various buildings based on their occupancy; finally, their health effects have also been touched upon. National Building Code of India (Part IV—2005) has been taken under consideration for different types of buildings.

Results and discussion

It has been observed that a number of pollutants are present in the indoor environment; hence, the determination of all the IAQ parameters consumes a lot of time and resources; a set of five to six parameters, i.e., TVOC, oxides of sulphur, carbon and nitrogen, ozone, and respirable suspended particulates, are the most effective indicators for the assessment of indoor air quality. The pollutants in indoor air are classified into three major categories, and the potential sources, health effects of these pollutants and mitigation measures to improve IAQ are listed further in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source: [23])

Fig. 2

(Source: [29])

Similar content being viewed by others

References

  1. Han Y, Zhu N, Lu N, Chen J, Ding Y (2010) The sources and health impacts of indoor air pollution. In: 2010 4th International Conference on Bioinformatics and Biomedical Engineering. IEEE, pp 1–4

  2. Maroni M, Seifert B, Lindvall T (1995) Indoor air quality: a comprehensive reference book. Elsevier, Amsterdam

    Google Scholar 

  3. Salthammer T, Mentese S, Marutzky RJCR (2010) Formaldehyde in the indoor environment. Chem Rev 110(4):2536–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Duan H et al (2016) Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China. Front Environ Sci Eng 10(1):73–84

    Article  CAS  Google Scholar 

  5. Shrestha IL, Shrestha SL (2005) Indoor air pollution from biomass fuels and respiratory health of the exposed population in Nepalese households. Int J Occup Environ Health 11(2):150–160

    Article  CAS  PubMed  Google Scholar 

  6. Sundell J (1999) Indoor environment and health. National Institute of Publis health, Stockholm

    Google Scholar 

  7. Jones AP (1999) Indoor air quality and health. Atmos Environ 33(28):4535–4564

    Article  CAS  Google Scholar 

  8. Standards, B.o.I. (2005) Types of buildings NBC. Standards, B.o.I., New Delhi

    Google Scholar 

  9. BIS (2005) Types of buildings NBC. BIS, New Delhi

    Google Scholar 

  10. Oh T et al (2012) A real-time monitoring and assessment method for calculation of total amounts of indoor air pollutants emitted in subway stations. J Air Waste Manag Assoc 62(5):517–526

    Article  CAS  PubMed  Google Scholar 

  11. Taylor E et al (2015) Characterization and determination of PM2.5 bound polycyclic aromatic hydrocarbons (PAHS) in indoor and outdoor air in western Sierra Leone. J Environ Analyt Toxicol 5(307):2161–0525.1000307

    Google Scholar 

  12. Halios CH et al (2005) Investigating cigarette–smoke indoor pollution in a controlled environment. Sci Total Environ 337(1–3):183–190

    Article  CAS  PubMed  Google Scholar 

  13. Karimi A et al (2016) Restrictive pattern of pulmonary symptoms among photocopy and printing workers: a retrospective cohort study. J Res Health Sci 16(2):81

    PubMed  PubMed Central  Google Scholar 

  14. Massey DD, Taneja M (2011) Emission and formation of fine particles from hardcopy devices: the cause of indoor air pollution. In: Monitoring, control and effects of air pollution. pp 121–134

  15. Amodio M et al (2014) Indoor air quality (IAQ) assessment in a multistorey shopping mall by high-spatial-resolution monitoring of volatile organic compounds (VOC). Environ Sci Pollut Res 21(23):13186–13195

    Article  CAS  Google Scholar 

  16. Nandan A et al (2020) Estimation of indoor air pollutant during photocopy/printing operation: a computational fluid dynamics (CFD)-based study. Environ Geochem Health 42:1–31

    Article  Google Scholar 

  17. Wolkoff P, Kjærgaard SKJ (2007) The dichotomy of relative humidity on indoor air quality. Environ Int 33(6):850–857

    Article  CAS  PubMed  Google Scholar 

  18. Jansz J (2011) Theories and knowledge about sick building syndrome. In: Abdul-Wahab SA (ed) Sick building syndrome. Springer, Berlin, pp 25–58

    Chapter  Google Scholar 

  19. Kelly TJ et al (1999) Emission rates of formaldehyde from materials and consumer products found in California homes. Environ Sci Technol 33(1):81–88

    Article  CAS  Google Scholar 

  20. Nazaroff WW, Weschler CJJ (2004) Cleaning products and air fresheners: exposure to primary and secondary air pollutants. Atmos Environ 38(18):2841–2865

    Article  CAS  Google Scholar 

  21. Marchand C et al (2008) Concentrations and determinants of gaseous aldehydes in 162 homes in Strasbourg (France). Atmos Environ 42(3):505–516

    Article  CAS  Google Scholar 

  22. EC (2005) HEXPOC human exposure characterisation of chemical substances; quantification of exposure routes. EC, Luxembourg

    Google Scholar 

  23. Khoder M et al (2000) Indoor and outdoor formaldehyde concentrations in homes in residential areas in Greater Cairo. J Environ Monit 2(2):123–126

    Article  CAS  PubMed  Google Scholar 

  24. de Blas M et al (2012) Simultaneous indoor and outdoor on-line hourly monitoring of atmospheric volatile organic compounds in an urban building. The role of inside and outside sources. Sci Total Environ 426:327–335

    Article  PubMed  Google Scholar 

  25. Winberry WT, Murphy NT, Riggin RM (1988) Compendium of methods for the determination of toxic organic compounds in ambient air. Atmospheric Research and Exposure Assessment Laboratory, Office of Research, New Delhi

    Google Scholar 

  26. Nandan A, Siddiqui N, Kumar P (2019) Assessment of environmental and ergonomic hazard associated to printing and photocopying: a review. Environ Geochem Health 41:1–25

    Article  Google Scholar 

  27. Nandan A, Siddiqui NA, Kumar P (2020) Estimation of indoor air pollutant during photocopy/printing operation: a computational fluid dynamics (CFD)-based study. Environ Geochem Health 42:3543–3573

    Article  CAS  PubMed  Google Scholar 

  28. Ohura T et al (2009) Comparative study on indoor air quality in Japan and China: characteristics of residential indoor and outdoor VOCs. Atmos Environ 43(40):6352–6359

    Article  CAS  Google Scholar 

  29. Kumar A et al (2014) Assessment of indoor air concentrations of VOCs and their associated health risks in the library of Jawaharlal Nehru University, New Delhi. Environ Sci Pollut Res 21(3):2240–2248

    Article  CAS  Google Scholar 

  30. Arashidani K et al (1996) Indoor pollution from heating. Ind Health 34(3):205–215

    Article  CAS  PubMed  Google Scholar 

  31. Levy JI et al (1998) Determinants of nitrogen dioxide concentrations in indoor ice skating rinks. Am J Public Health 88(12):1781–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. USHealth (1993) Hazardous substances data bank (HSDB, online database). USHealth, Fort Worth

    Google Scholar 

  33. Sexton K, Letz R, Spengler JD (1983) Estimating human exposure to nitrogen dioxide: an indoor/outdoor modeling approach. Environ Res 32(1):151–166

    Article  CAS  PubMed  Google Scholar 

  34. Coburn R, Forster R, Kane PJ (1965) Considerations of the physiological variables that determine the blood carboxyhemoglobin concentration in man. J Clin Investig 44(11):1899–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mercury MJ (1990) International programme on chemical safety, Environmental health criteria. WHO, Geneva, p 118

    Google Scholar 

  36. Lippmann M, Leikauf GD (2020) Environmental toxicants: human exposures and their health effects. Wiley, New York

    Book  Google Scholar 

  37. Lawrence A, Masih A, Taneja AJ (2005) Indoor/outdoor relationships of carbon monoxide and oxides of nitrogen in domestic homes with roadside, urban and rural locations in a central Indian region. Indoor Air 15(2):76–82

    Article  CAS  PubMed  Google Scholar 

  38. Srogi K (2007) Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5(4):169–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dubowsky SD et al (1999) The contribution of traffic to indoor concentrations of polycyclic aromatic hydrocarbons. J Exposure Sci Environ Epidemiol 9(4):312–321

    Article  CAS  Google Scholar 

  40. Tonne CC et al (2004) Predictors of personal polycyclic aromatic hydrocarbon exposures among pregnant minority women in New York City. Environ Health Perspect 112(6):754–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhu L et al (1997) Highly sensitive automatic analysis of polycyclic aromatic hydrocarbons in indoor and outdoor air. Talanta 45(1):113–118

    Article  CAS  PubMed  Google Scholar 

  42. Lung S, Kao M, Hu SJ (2003) Contribution of incense burning to indoor PM10 and particle-bound polycyclic aromatic hydrocarbons under two ventilation conditions. Indoor Air 13(2):194–199

    Article  CAS  PubMed  Google Scholar 

  43. Liu Y et al (2001) Polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of Hangzhou, China. Environ Sci Technol 35(5):840–844

    Article  CAS  PubMed  Google Scholar 

  44. Wilson NK et al (1989) A quiet sampler for the collection of semivolatile organic pollutants in indoor air. Environ Sci Technol 23(9):1112–1116

    Article  CAS  Google Scholar 

  45. Mäkeläinen I, Arvela H, Voutilainen AJ (2001) Correlations between radon concentration and indoor gamma dose rate, soil permeability and dwelling substructure and ventilation. Sci Total Environ 272(1–3):283–289

    Article  PubMed  Google Scholar 

  46. Keller G, Hoffmann B, Feigenspan TJ (2001) Radon permeability and radon exhalation of building materials. Sci Total Environ 272(1–3):85–89

    Article  CAS  PubMed  Google Scholar 

  47. Corsi RL, Chiang, CY (2000) The effect of vacuuming on indoor air particulate matter. In: Proceeding of A&WMA’s 93rd Annual Conference and Exhibition on Indoor Air Quality Issues in Educational/Public/Federal Facilities. Air and Waste Management Association, Salt Lake City, UT

  48. Pope C, Schwartz J, Ransom MJH (1992) Daily mortality and PM10 pollution in Utah Valley. Arch Environ 47:211–217

    Article  Google Scholar 

  49. Saliba N, Atallah M, Al-Kadamany GJAR (2009) Levels and indoor–outdoor relationships of PM10 and soluble inorganic ions in Beirut. Lebanon 92(1):131–137

    CAS  Google Scholar 

  50. Development N.C.F.E.A., U. EPA (2006) Air quality criteria for ozone and related photochemical oxidants. Research Triangle Park, EPA, p 821

    Google Scholar 

  51. Davies T et al (1984) Indoor/outdoor ozone concentrations at a contemporary art gallery. J Air Pollut Control Assoc 34(2):135–137

    Article  Google Scholar 

  52. Logan JA (1985) Tropospheric ozone: seasonal behavior, trends, and anthropogenic influence. J Geophys Res Atmos 90(D6):10463–10482

    Article  Google Scholar 

  53. Weschler CJJ (2000) Ozone in indoor environments: concentration and chemistry. Indoor Air 10(4):269–288

    Article  CAS  PubMed  Google Scholar 

  54. Valuntaite V, Girgždiene R (2007) Investigation of ozone emission and dispersion from photocopying machines. J Environ Eng Landsc Manag 15(2):61–67

    Article  Google Scholar 

  55. Baughman A, Arens EA (1996) Indoor humidity and human health—part I: literature review of health effects of humidity-influenced indoor pollutants. ASHRAE Trans 102:192–211

    Google Scholar 

  56. Hulin M et al (2012) Respiratory health and indoor air pollutants based on quantitative exposure assessments. Eur Respir Soc J 40:1033–1045

    Article  CAS  Google Scholar 

  57. Organization, W.H. (2010) WHO guidelines for indoor air quality: selected pollutants. WHO, Geneva

    Google Scholar 

  58. Georgakopoulos D et al (2008) Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles. Biogeosciences 6:721–737

    Article  Google Scholar 

  59. Douwes J et al (2003) Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg 47(3):187–200

    CAS  PubMed  Google Scholar 

  60. Nazaroff WW (2016) Teaching indoor environmental quality. Indoor Air 26(4):515–516

    Article  PubMed  Google Scholar 

  61. Han Y, Zhu N, Lu N, Chen J, Ding Y (2010) The sources and health impacts of indoor air pollution. In: 2010 4th International Conference on Bioinformatics and Biomedical Engineering. IEEE, pp 1–4

  62. Bholah R, Subratty AJ (2002) Indoor biological contaminants and symptoms of sick building syndrome in office buildings in Mauritius. Int J Environ Health Res 12(1):93–98

    Article  CAS  PubMed  Google Scholar 

  63. Ramachandran G et al (2005) Indoor air quality in two urban elementary schools—measurements of airborne fungi, carpet allergens, CO2, temperature, and relative humidity. J Occup Environ Hyg 2(11):553–566

    Article  PubMed  Google Scholar 

  64. Hung L-L (1996) Mycology and indoor air quality. Labor Med 27(7):454–460

    Google Scholar 

  65. Duflo E et al (2008) Indoor air pollution, health and economic well-being. Surv Perspect Integr Environ Soc 1:1–9

    Article  Google Scholar 

  66. Simoni M et al (1998) The Po river delta (North Italy) indoor epidemiological study: home characteristics, indoor pollutants, and subjects’ daily activity pattern. Indoor Air 8(2):70–79

    Article  CAS  Google Scholar 

  67. Finnegan M, Pickering C, Burge PJ (1984) The sick building syndrome: prevalence studies. Br J Clin Res Ed 289(6458):1573–1575

    Article  CAS  Google Scholar 

  68. Pouli AE et al (2003) The cytotoxic effect of volatile organic compounds of the gas phase of cigarette smoke on lung epithelial cells. Free Radic Biol Med 34(3):345–355

    Article  CAS  PubMed  Google Scholar 

  69. Bornehag C-G et al (2004) The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case-control study. Environ Health Perspect 112(14):1393–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang X et al (2017) Effects of exposure to carbon dioxide and bioeffluents on perceived air quality, self-assessed acute health symptoms, and cognitive performance. Indoor Air 27(1):47–64

    Article  CAS  PubMed  Google Scholar 

  71. Seppänen O, Fisk W, Mendell MJ (1999) Association of ventilation rates and CO2 concentrations with health andother responses in commercial and institutional buildings. Indoor Air 9(4):226–252

    Article  PubMed  Google Scholar 

  72. Arundel AV et al (1986) Indirect health effects of relative humidity in indoor environments. Environ Health Perspect 65:351–361

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Van Loenhout J et al (2016) The effect of high indoor temperatures on self-perceived health of elderly persons. Environ Res 146:27–34

    Article  PubMed  Google Scholar 

  74. Kim Y-M et al (2012) Effects of heat wave on body temperature and blood pressure in the poor and elderly. Environ Health Toxicol 27:e2012013

    Article  PubMed  PubMed Central  Google Scholar 

  75. Neas LM et al (1991) Association of indoor nitrogen dioxide with respiratory symptoms and pulmonary function in children. Am J Epidemiol 134(2):204–219

    Article  CAS  PubMed  Google Scholar 

  76. Bernard SM et al (2001) The potential impacts of climate variability and change on air pollution-related health effects in the United States. Environ Health Perspect 109(Suppl 2):199–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Neas LM et al (1994) Concentration of indoor particulate matter as a determinant of respiratory health in children. Am J Epidemiol 139(11):1088–1099

    Article  CAS  PubMed  Google Scholar 

  78. United E (2004) Air quality criteria for particulate matter. Citeseer, Princeton

    Google Scholar 

  79. Shimer D, Phillips T, Jenkins P (2005) Report to the California Legislature: indoor air pollution in California. California Environmental Protection Agency Air Resources Board, Sacramento

    Google Scholar 

  80. Bodavari S (2006) The Merck Index. Wiley, New York

    Google Scholar 

  81. Cometto-Muñiz JE, Cain WS, Abraham MH (2004) Detection of single and mixed VOCs by smell and by sensory irritation. Indoor Air 14:108–117

    Article  PubMed  Google Scholar 

  82. Berglund B et al (1992) Effects of indoor air pollution on human health. Indoor Air 2(1):2–25

    Article  Google Scholar 

  83. Zhang J, Lioy PJ (1994) Ozone in residential air: concentrations, I/O ratios, indoor chemistry, and exposures. Indoor Air 4(2):95–105

    Article  CAS  Google Scholar 

  84. Weschler CJ (2006) Ozone’s impact on public health: contributions from indoor exposures to ozone and products of ozone-initiated chemistry. Environ Health Perspect 114(10):1489–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Council NR (1988) Health risks of radon and other internally deposited alpha-emitters: BEIR IV, vol 4. National Academies Press, Washington, DC

    Google Scholar 

  86. Laurier D, Valenty M, Tirmarche M (2001) Radon exposure and the risk of leukemia: a review of epidemiological studies. Health Phys 81(3):272–288

    Article  CAS  PubMed  Google Scholar 

  87. Šrám RJ et al (2005) Ambient air pollution and pregnancy outcomes: a review of the literature. Environ Health Perspect 113(4):375–382

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sizonenko SV et al (2006) Impact of intrauterine growth restriction and glucocorticoids on brain development: insights using advanced magnetic resonance imaging. Mol Cell Endocrinol 254:163–171

    Article  PubMed  Google Scholar 

  89. Miller RL et al (2004) Polycyclic aromatic hydrocarbons, environmental tobacco smoke, and respiratory symptoms in an inner-city birth cohort. Chest 126(4):1071–1078

    Article  CAS  PubMed  Google Scholar 

  90. Jeon HL et al (2010) Assessment of airborne bioaerosols in Korean apartment houses. Toxicol Environ Health Sci 2(4):268–273

    Article  Google Scholar 

  91. Braun-Fahrländer C et al (2002) Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 347(12):869–877

    Article  PubMed  Google Scholar 

  92. Kim K-H, Kabir E, Jahan SA (2018) Airborne bioaerosols and their impact on human health. J Environ Sci 67:23–35

    Article  Google Scholar 

  93. McLean D et al (2004) Mortality and cancer incidence in New Zealand meat workers. Occup Environ Med 61(6):541–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yassin MF, AlThaqeb BE, Al-Mutiri EA (2012) Assessment of indoor PM2.5 in different residential environments. Atmos Environ 56:65–68

    Article  CAS  Google Scholar 

  95. Bernstein JA et al (2008) The health effects of nonindustrial indoor air pollution. J Allergy Clin Immunol 121(3):585–591

    Article  CAS  PubMed  Google Scholar 

  96. Almeida-Silva M, Wolterbeek HT, Almeida SJAE (2014) Elderly exposure to indoor air pollutants. Atmos Environ 85:54–63

    Article  CAS  Google Scholar 

  97. Kankaria A et al (2014) Indoor air pollution in India: Implications on health and its control. Indian J Community Med Off Publ Indian Assoc Prev Soc Med 39(4):203

    Google Scholar 

  98. Irga P, Torpy FJ (2016) Indoor air pollutants in occupational buildings in a sub-tropical climate: comparison among ventilation types. Build Environ 98:190–199

    Article  Google Scholar 

  99. Wittmaack K et al (2005) An overview on bioaerosols viewed by scanning electron microscopy. Sci Total Environ 346(1–3):244–255

    Article  CAS  PubMed  Google Scholar 

  100. Brooks BO (1991) Understanding indoor air quality. CRC Press, Boca Raton

    Google Scholar 

  101. Lawrence AJ, Taneja AJI, Environment B (2005) An investigation of indoor air quality in rural residential houses in India—a case study. Indoor Built Environ 14(3–4):321–329

    Article  CAS  Google Scholar 

  102. Zhang J, Smith KR (2007) Household air pollution from coal and biomass fuels in China: measurements, health impacts, and interventions. Environ Health Perspect 115(6):848–855

    Article  PubMed  Google Scholar 

  103. Liu K-S et al (2000) Unintentional carbon monoxide deaths in California from residential and other nonvehicular sources. Arch Environ Health Int J 55(6):375–381

    Article  CAS  Google Scholar 

  104. Spengler JD, McCarthy JF, Samet JM (2000) Indoor air quality handbook. McGraw Hill Professional, New York

    Google Scholar 

  105. Lee SC, Li W-M, Ao C-H (2002) Investigation of indoor air quality at residential homes in Hong Kong—case study. Atmos Environ 36(2):225–237

    Article  CAS  Google Scholar 

  106. Kamens R, Wiener R, Leith D (1991) A study of characterize indoor particles in three non-smoking homes. Atmos Environ Part A Gen Top 25(5–6):939–948

    Article  Google Scholar 

  107. Kassomenos P et al (2014) Study of PM10 and PM2.5 levels in three European cities: analysis of intra and inter urban variations. Atmos Environ 87:153–163

    Article  CAS  Google Scholar 

  108. Lim JM et al (2011) The analysis of PM2.5 and associated elements and their indoor/outdoor pollution status in an urban area. Indoor Air 21(2):145–155

    Article  CAS  PubMed  Google Scholar 

  109. Zhou Z et al (2016) Indoor PM2.5 concentrations in residential buildings during a severely polluted winter: a case study in Tianjin, China. Renew Sustain Energy Rev 64:372–381

    Article  CAS  Google Scholar 

  110. Ji W, Zhao BJB (2015) Contribution of outdoor-originating particles, indoor-emitted particles and indoor secondary organic aerosol (SOA) to residential indoor PM2.5 concentration: a model-based estimation. Build Environ 90:196–205

    Article  Google Scholar 

  111. Burge HA (1995) Aerobiology of the indoor environment. Occup Med 10(1):27

    CAS  PubMed  Google Scholar 

  112. Lee J-H, Jo W-K (2006) Characteristics of indoor and outdoor bioaerosols at Korean high-rise apartment buildings. Environ Res 101(1):11–17

    Article  CAS  PubMed  Google Scholar 

  113. De-qiao SUN (2009) Formaldehyde pollution survey of newly decorated residence and prevention methods in Tianjin. J Changchun Univ Technol (Natural Science Edition) 2

  114. Liu L et al (2017) The Research on formaldehyde concentration distribution in new decorated residential buildings. Procedia Eng 205:1535–1541

    Article  CAS  Google Scholar 

  115. Agency U.E.P. (2002) Integrated risk information system (IRIS) on benzene. U.E.P., Washington

    Google Scholar 

  116. Mølhave L, Bach B, Pedersen OF (1986) Human reactions to low concentrations of volatile organic compounds. Environ Int 12(1–4):167–175

    Article  Google Scholar 

  117. Yu C, Crump D (1998) A review of the emission of VOCs from polymeric materials used in buildings. Build Environ 33(6):357–374

    Article  Google Scholar 

  118. Crump DR et al (1997) Sources and concentrations of formaldehyde and other volatile organic compounds in the indoor air of four newly built unoccupied test houses. Indoor Built Environ 6(1):45–55

    Article  CAS  Google Scholar 

  119. Missia DA et al (2010) Indoor exposure from building materials: a field study. Atmos Environ 44(35):4388–4395

    Article  CAS  Google Scholar 

  120. Lerner JC et al (2012) Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires, Argentina. Atmos Environ 55:440–447

    Article  Google Scholar 

  121. Chan CS et al (2011) Characterisation of volatile organic compounds at hotels in southern China. Indoor Bulit Environ 20(4):420–429

    Article  CAS  Google Scholar 

  122. Raiyani C et al (1993) Assessment of indoor exposure to polycyclic aromatic hydrocarbons for urban poor using various types of cooking fuels. Bull Environ Contam Toxicol 50(5):420–429

    Article  Google Scholar 

  123. Delgado-Saborit JM, Stark C, Harrison RM (2011) Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards. Environ Int 37(2):383–392

    Article  CAS  PubMed  Google Scholar 

  124. Chatzidiakou L, Mumovic D, Summerfield AJ (2012) What do we know about indoor air quality in school classrooms? A critical review of the literature. Intell Build Int 4(4):228–259

    Article  Google Scholar 

  125. Pegas P et al (2011) Indoor air quality in elementary schools of Lisbon in spring. Environ Geochem Health 33(5):455–468

    Article  CAS  PubMed  Google Scholar 

  126. Almeida RM et al (2017) Natural ventilation and indoor air quality in educational buildings: experimental assessment and improvement strategies. Energy Effic 10(4):839–854

    Article  Google Scholar 

  127. Basińska M, Michałkiewicz M, Ratajczak K (2019) Impact of physical and microbiological parameters on proper indoor air quality in nursery. Environ Int 132:105098

    Article  PubMed  Google Scholar 

  128. Ali HH et al (2009) Evaluating indoor environmental quality of public school buildings in Jordan. Indoor Built Environ 18(1):66–76

    Article  CAS  Google Scholar 

  129. Annesi-Maesano I et al (2013) Indoor air quality and sources in schools and related health effects. J Toxicol Environ Health Part B 16(8):491–550

    Article  CAS  Google Scholar 

  130. Torres VM (2000) Indoor air quality in schools. Environ Chem Lett 12:467–482

    Google Scholar 

  131. Levetin E et al (1995) Indoor air quality in schools: exposure to fungal allergens. Aerobiologia 11(1):27–34

    Article  Google Scholar 

  132. Amato F et al (2014) Sources of indoor and outdoor PM2.5 concentrations in primary schools. Sci Total Environ 490:757–765

    Article  CAS  PubMed  Google Scholar 

  133. Bennett J et al (2019) Sources of indoor air pollution at a New Zealand urban primary school; a case study. Atmos Pollut Res 10(2):435–444

    Article  CAS  Google Scholar 

  134. Razali NYY et al (2015) Concentration of particulate matter, CO and CO2 in selected schools in Malaysia. Build Environ 87:108–116

    Article  Google Scholar 

  135. Jovanović M et al (2014) Investigation of indoor and outdoor air quality of the classrooms at a school in Serbia. Energy 77:42–48

    Article  Google Scholar 

  136. Raysoni AU et al (2013) Characterization of traffic-related air pollutant metrics at four schools in El Paso, Texas, USA: implications for exposure assessment and siting schools in urban areas. Atmos Environ 80:140–151

    Article  CAS  Google Scholar 

  137. de Gennaro G et al (2014) Indoor air quality in schools. Environ Chem Lett 12(4):467–482

    Article  Google Scholar 

  138. Darus FM et al (2012) Heavy metals composition of indoor dust in nursery schools building. Procedia Soc Behavior Sci 38:169–175

    Article  Google Scholar 

  139. Chithra V, Shiva Nagendra SN (2018) A review of scientific evidence on indoor air of school building: pollutants, sources, health effects and management. Asian J Atmos Environ 12(2):87–108

    Article  CAS  Google Scholar 

  140. Maragkidou A et al (2017) Occupational health risk assessment and exposure to floor dust PAHs inside an educational building. Sci Total Environ 579:1050–1056

    Article  CAS  PubMed  Google Scholar 

  141. Norbäck D et al (1990) Volatile organic compounds, respirable dust, and personal factors related to prevalence and incidence of sick building syndrome in primary schools. Occup Environ Med 47(11):733–741

    Article  Google Scholar 

  142. Kielb C et al (2015) Building-related health symptoms and classroom indoor air quality: a survey of school teachers in New York State. Indoor Air 25(4):371–380

    Article  CAS  PubMed  Google Scholar 

  143. Putus T, Tuomainen A, Rautiala S (2004) Chemical and microbial exposures in a school building: adverse health effects in children. Arch Environ Health Int J 59(4):194–201

    Article  CAS  Google Scholar 

  144. El-Sharkawy MF, Noweir MEH (2014) Indoor air quality levels in a University Hospital in the Eastern Province of Saudi Arabia. J Fam Community Med 21(1):39

    Article  Google Scholar 

  145. Verde SC et al (2015) Microbiological assessment of indoor air quality at different hospital sites. Res Microbiol 166(7):557–563

    Article  Google Scholar 

  146. Cacho C, Ventura Silva G, Martins AO, Fernandes EO, Saraga DE, Dimitroulopoulou C, Bartzis JG, Rembges D, Barrero-Moreno J, Kotzias D (2013) Air pollutants in office environments and emissions from electronic equipment: a review. Fresen Environ Bull 22(9)

  147. Jung C-C et al (2015) Indoor air quality varies with ventilation types and working areas in hospitals. Build Environ 85:190–195

    Article  Google Scholar 

  148. Zdrojewicz Z, Strzelczyk J (2006) Radon treatment controversy. Dose Response 4(2):dose-response

    Article  Google Scholar 

  149. Dascalaki EG et al (2008) Air quality in hospital operating rooms. Build Environ 43(11):1945–1952

    Article  Google Scholar 

  150. Tortora MJ et al (2003) Comparison of waste anesthetic gas exposures to operating room staff during cases using LMAs and ETTs. Chem Health Saf 10(3):19–21

    Article  CAS  Google Scholar 

  151. Śmiełowska M et al (2017) Indoor air quality in public utility environments—a review. Environ Sci Pollut Res 24(12):11166–11176

    Article  Google Scholar 

  152. Huang P-C et al (2009) Association between prenatal exposure to phthalates and the health of newborns. Environ Int 35(1):14–20

    Article  PubMed  Google Scholar 

  153. Bustamante-Montes L et al (2013) Prenatal exposure to phthalates is associated with decreased anogenital distance and penile size in male newborns. J Dev Origins Health Dis 4(4):300–306

    Article  CAS  Google Scholar 

  154. Sofuoglu SC et al (2015) Indoor air quality in a restaurant kitchen using margarine for deep-frying. Environ Sci Pollut Res 22(20):15703–15711

    Article  CAS  Google Scholar 

  155. Zhong L et al (1999) Lung cancer and indoor air pollution arising from Chinese-style cooking among nonsmoking women living in Shanghai, China. Epidemiology 10:488–494

    Article  CAS  PubMed  Google Scholar 

  156. Zhao Y, Zhao B (2018) Emissions of air pollutants from Chinese cooking: a literature review. Build Simul 11:977–995

    Article  Google Scholar 

  157. Taner S, Pekey B, Pekey H (2013) Fine particulate matter in the indoor air of barbeque restaurants: elemental compositions, sources and health risks. Sci Total Environ 454:79–87

    Article  PubMed  Google Scholar 

  158. Raute LJ et al (2011) Smoking ban and indoor air quality in restaurants in Mumbai, India. Indian J Occup Environ Med 15(2):68

    Article  PubMed  PubMed Central  Google Scholar 

  159. Siegel MJJ (1993) Involuntary smoking in the restaurant workplace: a review of employee exposure and health effects. JAMA 270(4):490–493

    Article  CAS  PubMed  Google Scholar 

  160. Lee S, Chan L, Chiu MJ (1999) Indoor and outdoor air quality investigation at 14 public places in Hong Kong. Environ Int 25(4):443–450

    Article  CAS  Google Scholar 

  161. Brimblecombe P (1990) The composition of museum atmospheres. Atmos Environ Part B Urban Atmos 24(1):1–8

    Article  Google Scholar 

  162. Brimblecombe P et al (1999) The indoor environment of a modern museum building, the Sainsbury Centre for Visual Arts, Norwich, UK. Indoor Air 9(3):146–164

    Article  CAS  PubMed  Google Scholar 

  163. Ferdyn-Grygierek JJ (2016) Monitoring of indoor air parameters in large museum exhibition halls with and without air-conditioning systems. Build Environ 107:113–126

    Article  Google Scholar 

  164. Chiang K-C et al (2009) Assessing hazardous risks of human exposure to temple airborne polycyclic aromatic hydrocarbons. J Hazard Mater 166(2–3):676–685

    Article  CAS  PubMed  Google Scholar 

  165. Chiang K-C, Liao C-M (2006) Heavy incense burning in temples promotes exposure risk from airborne PMs and carcinogenic PAHs. Sci Total Environ 372(1):64–75

    Article  CAS  PubMed  Google Scholar 

  166. Lin T-C et al (2008) Incense smoke: clinical, structural and molecular effects on airway disease. Clin Mol Allergy 6(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  167. Ramos C et al (2014) Exposure to indoor air pollutants during physical activity in fitness centers. Build Environ 82:349–360

    Article  Google Scholar 

  168. Demianiuk A et al (2010) The changes of carbon dioxide concentration in a cinema auditorium. Budownictwo i Inżynieria Środowiska 1(2):105–110

    Google Scholar 

  169. Kim YM et al (2001) Concentrations and sources of VOCs in urban domestic and public microenvironments. Environ Sci Technol 35(6):997–1004

    Article  CAS  PubMed  Google Scholar 

  170. Baek S-O, Kim Y-S, Perry RJ (1997) Indoor air quality in homes, offices and restaurants in Korean urban areas—indoor/outdoor relationships. Atmos Environ 31(4):529–544

    Article  CAS  Google Scholar 

  171. Nathanson TJ (1995) Occupational health, and welfare, indoor air quality in office buildings: a technical guide. Canadian Government Publishing, Ontario

    Google Scholar 

  172. Mølhave L et al (1997) Total volatile organic compounds (TVOC) in indoor air quality investigations. Indoor Air 7(4):225–240

    Article  Google Scholar 

  173. Wallace L, Pellizzari E, Wendel CJ (1991) Total volatile organic concentrations in 2700 personal, indoor; and outdoor air samples collected in the US EPA TEAM studies. Indoor Air 1(4):465–477

    Article  Google Scholar 

  174. Brown SK et al (1994) Concentrations of volatile organic compounds in indoor air—a review. Indoor Air 4(2):123–134

    Article  CAS  Google Scholar 

  175. Ekberg LE (1994) Volatile organic compounds in office buildings. Atmos Environ 28(22):3571–3575

    Article  CAS  Google Scholar 

  176. Wolkoff P et al (1991) The Danish twin apartment study; part I: formaldehyde and long-term VOC measurements. Indoor Air 1(4):478–490

    Article  Google Scholar 

  177. Teunissen CJ (1998) International conference on volatile organic compounds in the environment. Indoor Bulit Environ 7(1):57–58

    Google Scholar 

  178. Chao CY, Chan GY (2001) Quantification of indoor VOCs in twenty mechanically ventilated buildings in Hong Kong. Atmos Environ 35(34):5895–5913

    Article  CAS  Google Scholar 

  179. Hodgson A et al (2000) Volatile organic compound concentrations and emission rates in new manufactured and site-built houses. Indoor Air 10(3):178–192

    Article  CAS  PubMed  Google Scholar 

  180. Godish T (2019) Indoor air pollution control. CRC Press, Boca Raton

    Book  Google Scholar 

  181. Ilgen E et al (2001) Aromatic hydrocarbons in the atmospheric environment: part I. Indoor versus outdoor sources, the influence of traffic. Atmos Environ 35(7):1235–1252

    Article  CAS  Google Scholar 

  182. Salonen HJ et al (2009) Airborne concentrations of volatile organic compounds, formaldehyde and ammonia in Finnish office buildings with suspected indoor air problems. J Occup Environ Hyg 6(3):200–209

    Article  CAS  PubMed  Google Scholar 

  183. Guo H et al (2003) Source characterization of BTEX in indoor microenvironments in Hong Kong. Atmos Environ 37(1):73–82

    Article  CAS  Google Scholar 

  184. Wong L, Mui KJ (2007) Evaluation on four sampling schemes for assessing indoor air quality. Build Environ 42(3):1119–1125

    Article  Google Scholar 

  185. Girman J, Baker B, Burton LJIA (2002) Prevalence of potential sources of indoor air pollution in US office buildings. Indoor Air 2(1):438–443

    Google Scholar 

  186. Tuomi T et al (2000) Mycotoxins in crude building materials from water-damaged buildings. Appl Environ Micrbiol 66(5):1899–1904

    Article  CAS  Google Scholar 

  187. Fang L et al (2004) Impact of indoor air temperature and humidity in an office on perceived air quality, SBS symptoms and performance. Indoor Air 14:74–81

    Article  PubMed  Google Scholar 

  188. Wyon DP, Wargocki P (2006) Indoor air quality effects on office work. In: Clements-Croome D (ed) Creating the productive workplace. Taylor & Francis, Boca Raton, pp 193–205

    Google Scholar 

  189. Godish T (1981) Formaldehyde and building-related illness. J Environ Health 44:116–121

    CAS  Google Scholar 

  190. Wong CA, Ahmad MI (2017) Indoor air quality investigation in manufacturing and storing areas inside a food industry

  191. Gładyszewska-Fiedoruk K, Nieciecki M (2016) Indoor air quality in a multi-car garage. Energy Procedia 95:132–139

    Article  Google Scholar 

  192. Nirvan G et al (2012) Contaminant transport through the garage–house interface leakage. Build Environ 56:176–183

    Article  Google Scholar 

  193. Papakonstantinou K et al (2003) Air quality in an underground garage: computational and experimental investigation of ventilation effectiveness. Energy Build 35(9):933–940

    Article  Google Scholar 

  194. Padhi B et al (2010) Assessment of intra-urban variability in indoor air quality and its impact on children’s health. Air Qual Atmos Health 3(3):149–158

    Article  CAS  Google Scholar 

  195. Taneja A, Saini R, Masih A (2008) Indoor air quality of houses located in the urban environment of Agra, India. Ann N Y Acad Sci 1140(1):228–245

    Article  CAS  PubMed  Google Scholar 

  196. Chithra V, Shiva Nagendra SM (2012) Indoor air quality investigations in a naturally ventilated school building located close to an urban roadway in Chennai, India. Build Environ 54:159–167

    Article  Google Scholar 

  197. Wolkoff P (2013) Indoor air pollutants in office environments: assessment of comfort, health, and performance. Int J Hyg Environ Health 216(4):371–394

    Article  CAS  PubMed  Google Scholar 

  198. Maroni M, Axelrad R, Bacaloni A (1995) NATO’s efforts to set indoor air quality guidelines and standards. AIHAJ 56(5):499–508

    Article  Google Scholar 

  199. Maroni M (1998) Health effects of indoor air pollutants and their mitigation and control. Radiat Prot Dosim 78(1):27–32

    Article  CAS  Google Scholar 

  200. Sakai K et al (2004) A comparison of indoor air pollutants in Japan and Sweden: formaldehyde, nitrogen dioxide, and chlorinated volatile organic compounds. Environ Res 94(1):75–85

    Article  CAS  PubMed  Google Scholar 

  201. Yu B et al (2009) Review of research on air-conditioning systems and indoor air quality control for human health. Int J Refrig 32(1):3–20

    Article  Google Scholar 

  202. Liu J, Tao Y, Wen T (1992) Decreasing characteristics of formaldehyde and benzene concentrations in indoor air after decoration. J Environ Health 5

  203. Liu Y-J et al (2007) Which ornamental plant species effectively remove benzene from indoor air? Atmos Environ 41(3):650–654

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Nandan.

Ethics declarations

Conflict of interest

Abhishek Nandan, N. A. Siddiqui, Chandrakant Singh and Ashish Aeri declare that we have no conflict of interest.

Ethical statement

This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandan, A., Siddiqui, N.A., Singh, C. et al. Occupational and environmental impacts of indoor air pollutant for different occupancy: a review. Toxicol. Environ. Health Sci. 13, 303–322 (2021). https://doi.org/10.1007/s13530-021-00102-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-021-00102-9

Keywords

Navigation