Skip to main content
Log in

Calreticulin novel mutations in type 2 diabetes mellitus

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Imbalance in Ca2+ concentration and dysfunction of the chaperone system are linked with type 2 diabetes mellitus (T2DM). Two-dimensional protein profiling of pancreatic beta cells in T2DM subjects has shown that the Ca2+ binding chaperone, calreticulin (CALR), plays a role in the pathophysiology of this disease. In a case/control study, we performed mutation screening of the promoter region, 9 exons, and exon/intron boundaries of CALR by PCR-SSCP and sequencing in 120 patients with T2DM and 530 controls. Two novel mutations with an estimated frequency of 0.0005 were detected in T2DM patients, which were absent in the control pool (Mid P exact <0.01). The first mutation was a G>T transversion in intron 2 conserved polypurine tract at IVSII-142. The second mutation was a 9-bp deletion in the highly conserved exon 9 encompassing amino acids 397–399. To our knowledge, the current study reports for the first time, that CALR gene mutations that occur with T2DM. Studying larger groups of patients with T2DM for the CALR gene as well as other genes in the chaperone system is warranted to further elucidate the role of low frequency mutations in the causation of this complex disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CALR:

Calreticulin

ER:

Endoplasmic reticulum

GLUT-1:

Glucose transporter 1 (GLUT-1

HBA1c:

Nonenzymatic glycosylated hemoglobin

SSCP:

Single strand conformation polymorphism analysis

T2DM:

Type 2 diabetes mellitus

UPR:

Unfolded protein response

References

  1. Grarup N, Sparso T, Hansen T. Physiologic characterization of type 2 diabetes-related loci. Curr Diab Rep. 2010;10:485–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Poulsen P et al. Increased risk of type 2 diabetes in elderly twins. Diabetes. 2009;58:1350–5.

    Article  CAS  PubMed  Google Scholar 

  3. Folli F et al. Altered insulin receptor signalling and beta-cell cycle dynamics in type 2 diabetes mellitus. PLoS One. 2011;6:e28050.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Huang QY, Cheng MR, Ji SL. Linkage and association studies of the susceptibility genes for type 2 diabetes. Yi Chuan Xue Bao. 2006;33:573–89.

    CAS  PubMed  Google Scholar 

  5. Back SH, Kaufman RJ. Endoplasmic reticulum stress and type 2 diabetes. Annu Rev Biochem. 2012;81:767–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Basseri S, Austin RC. Endoplasmic reticulum stress and lipid metabolism: mechanisms and therapeutic potential. Biochem Res Int. 2012;2012:841362.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Varadi A, Rutter GA. Dynamic imaging of endoplasmic reticulum Ca2+ concentration in insulin-secreting MIN6 Cells using recombinant targeted cameleons: roles of sarco(endo)plasmic reticulum Ca2+−ATPase (SERCA)-2 and ryanodine receptors. Diabetes. 2002;51 Suppl 1:S190–201.

    Article  CAS  PubMed  Google Scholar 

  8. Boden G et al. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes. 2008;57:2438–44.

    Article  CAS  PubMed  Google Scholar 

  9. Smith MJ, Koch GL. Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding ER/SR protein. EMBO J. 1989;8:3581–6.

    CAS  PubMed  Google Scholar 

  10. Nakamura K et al. Functional specialization of calreticulin domains. J Cell Biol. 2001;154:961–72.

    Article  CAS  PubMed  Google Scholar 

  11. Gold LI et al. Calreticulin: non-endoplasmic reticulum functions in physiology and disease. FASEB J. 2010;24:665–83.

    Article  CAS  PubMed  Google Scholar 

  12. Villamil Giraldo AM et al. The structure of calreticulin C-terminal domain is modulated by physiological variations of calcium concentration. J Biol Chem. 2010;285:4544–53.

    Article  PubMed  Google Scholar 

  13. Michalak M et al. Calreticulin: one protein, one gene, many functions. Biochem J. 1999;344:281–92.

    Article  CAS  PubMed  Google Scholar 

  14. Bazwinsky-Wutschke I et al. Distribution patterns of calcium-binding proteins in pancreatic tissue of non-diabetic as well as type 2 diabetic rats and in rat insulinoma beta-cells (INS-1). Histochem Cell Biol. 2010;134:115–27.

    Article  CAS  PubMed  Google Scholar 

  15. Jalali S et al. Calreticulin regulates insulin receptor expression and its downstream PI3 Kinase/Akt signalling pathway. Biochim Biophys Acta. 2008;1783:2344–51.

    Article  CAS  PubMed  Google Scholar 

  16. Totary-Jain H et al. Calreticulin destabilizes glucose transporter-1 mRNA in vascular endothelial and smooth muscle cells under high-glucose conditions. Circ Res. 2005;97:1001–8.

    Article  CAS  PubMed  Google Scholar 

  17. Ahmed M, Forsberg J, Bergsten P. Protein profiling of human pancreatic islets by two-dimensional gel electrophoresis and mass spectrometry. J Proteome Res. 2005;4:931–40.

    Article  CAS  PubMed  Google Scholar 

  18. Bass J et al. Folding of insulin receptor monomers is facilitated by the molecular chaperones calnexin and calreticulin and impaired by rapid dimerization. J Cell Biol. 1998;141:637–46.

    Article  CAS  PubMed  Google Scholar 

  19. Boden G, Merali S. Measurement of the increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Methods Enzymol. 2011;489:67–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. WHO. Definition, diagnosis and classification of diabetes mellitus and its complications. Department of Noncommunicable Disease Surveillance; 1999.

  21. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Nabi MO et al. Novel mutations in the calreticulin gene core promoter and coding sequence in schizoaffective disorder. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:706–9.

    CAS  PubMed  Google Scholar 

  23. Gasser RB et al. Single-strand conformation polymorphism (SSCP) for the analysis of genetic variation. Nat Protoc. 2006;1:3121–8.

    Article  CAS  PubMed  Google Scholar 

  24. Desmet FO et al. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37(9):e67.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Ravier MA et al. Mechanisms of control of the free Ca2+ concentration in the endoplasmic reticulum of mouse pancreatic beta-cells: interplay with cell metabolism and [Ca2+]c and role of SERCA2b and SERCA3. Diabetes. 2011;60:2533–45.

    Article  CAS  PubMed  Google Scholar 

  26. Raghubir R, Nakka VP, Mehta SL. Endoplasmic reticulum stress in brain damage. Methods Enzymol. 2011;489:259–75.

    CAS  PubMed  Google Scholar 

  27. Hoshino T et al. Endoplasmic reticulum chaperones inhibit the production of amyloid-beta peptides. Biochem J. 2007;402:581–9.

    Article  CAS  PubMed  Google Scholar 

  28. Shao L et al. Mood stabilizing drug lithium increases expression of endoplasmic reticulum stress proteins in primary cultured rat cerebral cortical cells. Life Sci. 2006;78:1317–23.

    Article  CAS  PubMed  Google Scholar 

  29. Garcia-Blanco MA, Baraniak AP, Lasda EL. Alternative splicing in disease and therapy. Nat Biotechnol. 2004;22:535–46.

    Article  CAS  PubMed  Google Scholar 

  30. Yokoyama M, Hirata K. New function of calreticulin: calreticulin-dependent mRNA destabilization. Circ Res. 2005;97:961–3.

    Article  CAS  PubMed  Google Scholar 

  31. Sundar Rajan S et al. Endoplasmic reticulum (ER) stress & diabetes. Indian J Med Res. 2007;125:411–24.

    CAS  PubMed  Google Scholar 

  32. Imamura M, Maeda S. Genetics of type 2 diabetes: the GWAS era and future perspectives [Review]. Endocr J. 2011;58:723–39.

    Article  CAS  PubMed  Google Scholar 

  33. Pound LD et al. The pancreatic islet beta-cell-enriched transcription factor Pdx-1 regulates Slc30a8 gene transcription through an intronic enhancer. Biochem J. 2011;433:95–105.

    Article  CAS  PubMed  Google Scholar 

  34. Al-Harbi EM et al. Genotypes and allele frequencies of angiotensin-converting enzyme (ACE) insertion/deletion polymorphism among Bahraini population with type 2 diabetes mellitus and related diseases. Mol Cell Biochem. 2012;362:219–23.

    Article  CAS  PubMed  Google Scholar 

  35. Sinorita H et al. ACE gene insertion/deletion polymorphism among patients with type 2 diabetes, and its relationship with metabolic syndrome at Sardjito Hospital Yogyakarta, Indonesia. Acta Med Indones. 2010;42:12–6.

    PubMed  Google Scholar 

  36. Sirand-Pugnet P et al. An intronic (A/U)GGG repeat enhances the splicing of an alternative intron of the chicken beta-tropomyosin pre-mRNA. Nucleic Acids Res. 1995;23:3501–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Martinez-Contreras R et al. Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing. PLoS Biol. 2006;4:e21.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Majewski J, Ott J. Distribution and characterization of regulatory elements in the human genome. Genome Res. 2002;12:1827–36.

    Article  CAS  PubMed  Google Scholar 

  39. Coppolino MG, Dedhar S. Calreticulin. Int J Biochem Cell Biol. 1998;30:553–8.

    Article  CAS  PubMed  Google Scholar 

  40. Frickel EM et al. TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc Natl Acad Sci U S A. 2002;99:1954–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Corbett EF et al. Ca2+ regulation of interactions between endoplasmic reticulum chaperones. J Biol Chem. 1999;274:6203–11.

    Article  CAS  PubMed  Google Scholar 

  42. Aghajani A, Rahimi A, Fadai F, Ebrahimi A, Najmabadi H, Ohadi M. A point mutation at the calreticulin gene core promoter conserved sequence in a case of schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2006;141B:294–5.

    Article  CAS  PubMed  Google Scholar 

  43. Farokhashtiani T et al. Reversion of the human calreticulin gene promoter to the ancestral type as a result of a novel psychosis-associated mutation. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35:541–4.

    Article  CAS  Google Scholar 

  44. Ohadi M et al. Novel evidence of the involvement of calreticulin in major psychiatric disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2012;37:276–81.

    Article  CAS  Google Scholar 

  45. Esmaeilzadeh-Gharehdaghi E et al. Support for down-tuning of the calreticulin gene in the process of human evolution. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35:1770–3.

    Article  CAS  Google Scholar 

  46. Alkelai A et al. Association of the type 2 diabetes mellitus susceptibility gene, TCF7L2, with schizophrenia in an Arab-Israeli family sample. PLoS One. 2012;7:e29228.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Hansen T et al. At-risk variant in TCF7L2 for type II diabetes increases risk of schizophrenia. Biol Psychiatry. 2011;70:59–63.

    Article  CAS  PubMed  Google Scholar 

  48. Altar CA et al. Insulin, IGF-1, and muscarinic agonists modulate schizophrenia-associated genes in human neuroblastoma cells. Biol Psychiatry. 2008;64:1077–87.

    Article  CAS  PubMed  Google Scholar 

  49. Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet. 2008;40:695–701.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Staff of the BoAli clinical laboratory in Zanjan and Dr Faranak Sharifi for providing us with the clinical samples and Dr Javad Naserian was involved in statistical analysis. We would like to thanks Dr Amir Hosein Taromchi was involved in molecular genetics analysis and study design.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Authors’ contributions

SM was involved in study design, carried out molecular genetics and statistical analysis, compiled the data, wrote the Ms.

MR and KP were involved in data analysis.

MO was the principal geneticist and coordinator of the project, involved in conceptualization of the project, study design, oversee complete genetic analysis in laboratory, critical inputs and finalization of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanaz Mahmazi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmazi, S., Parivar, K., Rahnema, M. et al. Calreticulin novel mutations in type 2 diabetes mellitus. Int J Diabetes Dev Ctries 33, 219–225 (2013). https://doi.org/10.1007/s13410-013-0152-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-013-0152-0

Keywords

Navigation