Skip to main content
Log in

Distribution patterns of calcium-binding proteins in pancreatic tissue of non-diabetic as well as type 2 diabetic rats and in rat insulinoma β-cells (INS-1)

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The present study dealt with the localization of different calcium-binding proteins (CaBPs) in the pancreatic tissue of non-diabetic and diabetic rats and in rat insulinoma β-cells (INS-1). Transcripts of CaBPs displayed different expression levels in rat pancreatic tissue and INS-1 cells. Immunohistochemistry demonstrated that three of these proteins, calmodulin, calreticulin and calbindin-D28k, were located predominantly in the pancreatic islets (in both α- and β-cells) of rats, showing weaker labeling of exocrine tissue. Secretagogin was exclusively found within islets. All CaBPs were also immunohistochemically detected in INS-1 cells. Immunohistochemical analysis demonstrates differences in CaBP distributions when comparing the pancreatic tissues of diabetic Goto-Kakizaki rats and non-diabetic Wistar rats. Pancreatic tissue in type 2 diabetic Goto-Kakizaki rats showed significantly higher transcript levels of all CaBPs compared to those in Wistar rats. These results indicate that alterations of CaBPs in pancreatic islets are associated with metabolic disturbances related to type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Halim SM, Guenifi A, Efendic S, Ostenson CG (1993) Both somatostatin and insulin responses to glucose are impaired in the perfused pancreas of the spontaneously noninsulin-dependent diabetic GK (Goto-Kakizaki) rats. Acta Physiol Scand 148:219–226

    Article  PubMed  CAS  Google Scholar 

  • Abdel-Halim SM, Guenifi A, Khan A, Larsson O, Berggren PO, Ostenson CG, Efendić S (1996) Impaired coupling of glucose signal to the exocytotic machinery in diabetic GK rats: a defect ameliorated by cAMP. Diabetes 45:934–940

    Article  PubMed  Google Scholar 

  • Ahmed M, Forsberg J, Bergsten P (2005) Protein profiling of human pancreatic islets by two-dimensional gel electrophoresis and mass spectrometry. J Proteome Res 4:931–940

    Article  PubMed  CAS  Google Scholar 

  • Bazwinsky I, Hilbig H, Bidmon H-J, Rübsamen R (2003) Characterization of the human superior olivary complex by calcium binding proteins and neurofilament H (SMI-32). J Comp Neurol 456:292–303

    Article  PubMed  CAS  Google Scholar 

  • Bazwinsky I, Bidmon H-J, Zilles K, Hilbig H (2005) Characterization of the rhesus monkey superior olivary complex by calcium binding proteins and synaptophysin. J Anat 207:745–761

    Article  PubMed  Google Scholar 

  • Bazwinsky I, Härtig W, Rübsamen R (2008) Characterization of cochlear nucleus principal cells of Meriones unguiculatus and Monodelphis domestica by use of calcium-binding protein immunolabeling. J Chem Neuroanat 35:158–174

    Article  PubMed  CAS  Google Scholar 

  • Bazwinsky-Wutschke I, Mühlbauer E, Wolgast S, Peschke E (2009) Transcripts of calcium/calmodulin-dependent kinases are changed after forskolin- or IBMX-induced insulin secretion due to melatonin treatment of rat insulinoma beta-cells (INS-1). Horm Metab Res 41:805–813

    Article  PubMed  CAS  Google Scholar 

  • Buffa R, Mare P, Salvadore M, Solcia E, Furness JB, Lawson DE (1989) Calbindin 28 kDA in endocrine cells of known or putative calcium-regulating function. Thyro-parathyroid C cells, gastric ECL cells, intestinal secretin and enteroglucagon-cells, pancreatic glucagons, insulin and PP cells, adrenal medullary NA cells and some pituitary (TSH?) cells. Histochemistry 91:107–113

    Article  PubMed  CAS  Google Scholar 

  • Cras-Méneur C, Inoue H, Zhou Y, Ohsugi M, Bernal-Mizrachi E, Pape D, Clifton SW, Permutt MA (2004) An expression profile of human pancreatic islet mRNAs by serial analysis of gene expression (SAGE). Diabetologia 47:284–299

    Article  PubMed  CAS  Google Scholar 

  • Csernus VJ, Hammer T, Peschke D, Peschke E (1998) Dynamic insulin secretion from perifused rat pancreatic islets. Cell Mol Lif Sci 54:733–743

    Article  CAS  Google Scholar 

  • Epstein PN, Overbeek PA, Means AR (1989) Calmodulin-induced early-onset diabetes in transgenic mice. Cell 58:1067–1073

    Article  PubMed  CAS  Google Scholar 

  • Epstein PN, Ribar TJ, Decker GL, Yaney G, Means AR (1992) Elevated beta-cell calmodulin produces a unique insulin secretory defect in transgenic mice. Endocrinology 130:1387–1393

    Article  PubMed  CAS  Google Scholar 

  • Frese T, Bazwinsky I, Mühlbauer E, Peschke E (2007) Circadian and age-dependent expression patterns of GLUT2 and glucokinase in the pancreatic beta-cell of diabetic and nondiabetic rats. Horm Metab Res 39:567–574

    Article  PubMed  CAS  Google Scholar 

  • Gartner W, Lang W, Leutmetzer F, Domanovits H, Waldhäusl W, Wagner L (2001) Cerebral expression and serum detectability of secretagogin, a recently cloned EF-hand Ca(2+)-binding protein. Cereb Cortex 11:1161–1169

    Article  PubMed  CAS  Google Scholar 

  • Gartner W, Vila G, Daneva T, Nabokikh A, Koc-Saral F, Ilhan A, Majdic O, Luger A, Wagner L (2007) New functional aspects of the neuroendocrine marker secretagogin based on the characterization of its rat homolog. Am J Physiol Endocrinol Metab 293:E347–E354

    Article  PubMed  CAS  Google Scholar 

  • Gelebart P, Opas M, Michalak M (2005) Calreticulin a Ca2+-binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol 37:260–266

    Article  PubMed  CAS  Google Scholar 

  • Giroix MH, Vesco L, Portha B (1993) Functional and metabolic perturbations in isolated pancreatic islets from the GK rat, a genetic model of noninsulin-dependent diabetes. Endocrinology 132:815–822

    Article  PubMed  CAS  Google Scholar 

  • Gómez Dumm CL, Atwater I, Epstein PN, Gagliardino JJ (1994) Quantitative immune-cytochemical study of islet cell populations in diabetic calmodulin-transgenic mice. Virchows Arch 425:73–77

    Article  PubMed  Google Scholar 

  • Groenendyk J, Lynch J, Michalak M (2004) Calreticulin, Ca2+, and calcineurin-signaling from the endoplasmic reticulum. Mol Cells 17:289–383

    Google Scholar 

  • Hamilton K, Tein M, Glazier J, Mawer EB, Berry JL, Balment RJ, Boyd RD, Garland HO, Sibley CP (2000) Altered calbindin mRNA expression and calcium regulating hormones in rat diabetic pregnancy. J Endocrinol 164:67–76

    Article  PubMed  CAS  Google Scholar 

  • Harding HP, Ron D (2002) Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51:S455–S461

    Article  PubMed  CAS  Google Scholar 

  • Henquin JC, Ravier MA, Nenquin M, Jonas JC, Gilon P (2003) Hierarchy of the beta-cell signals controlling insulin secretion. Eur J Clin Invest 33:742–750

    Article  PubMed  CAS  Google Scholar 

  • Ikura M, Ames JB (2006) Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality. Proc Natl Acad Sci USA 103:1159–1164

    Article  PubMed  CAS  Google Scholar 

  • Jägerbrink T, Lexander H, Palmberg C, Shafqat J, Sharoyko V, Berggren PO, Efendic S, Zaitsev S, Jörnvall H (2007) Differential protein expression in pancreatic islets after treatment with an imidazoline compound. Cell Mol Life Sci 64:1310–1316

    Article  PubMed  CAS  Google Scholar 

  • Jethmalani SM, Henle KJ, Gazitt Y, Walker PD, Wang SY (1997) Intracellular distribution of heat-induced stress glycoproteins. J Cell Biochem 66:98–111

    Article  PubMed  CAS  Google Scholar 

  • Johnson CK (2006) Calmodulin, conformational states, and calcium signaling. A single-molecule perspective. Biochemistry 45:14233–14246

    Article  PubMed  CAS  Google Scholar 

  • Johnson JA, Grande JP, Roche PC, Kumar R (1994) Immunohistochemical localization of the 1, 25(OH)2D3 receptor and calbindin D28k in human and rat pancreas. Am J Physiol 267:E356–E360

    PubMed  CAS  Google Scholar 

  • Kato S, Ishida H, Tsuura Y, Tsuji K, Nishimura M, Horie M, Taminato T, Ikehara S, Odaka H, Ikeda I, Okada Y, Seino Y (1996) Alterations in basal and glucose-stimulated voltage-dependent Ca2+ channel activities in pancreatic beta cells of non-insulin-dependent diabetes mellitus GK rats. J Clin Invest 97:2417–2425

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Clark SA, Gill RK, Christakos S (1994) 1, 25-Dihydroxyvitamin D3 and pancreatic beta-cell function: vitamin D receptors, gene expression, and insulin secretion. Endocrinology 134:1602–1610

    Article  PubMed  CAS  Google Scholar 

  • MacDonald MJ (1996) Glucose-stimulated expressed sequence tags from rat pancreatic islets. Mol Cell Endocrinol 123:199–204

    Article  PubMed  CAS  Google Scholar 

  • Mailhot G, Petit JL, Demers C, Gascon-Barré M (2000) Influence of the in vivo calcium status on cellular calcium homeostasis and the level of the calcium-binding protein calreticulin in rat hepatocytes. Endocrinology 141:891–900

    Article  PubMed  CAS  Google Scholar 

  • Maj M, Gartner W, Ilhan A, Neziri D, Attems J, Wagner L (2010) Expression of Tau in insulin secreting cells and its interaction with the calcium binding protein secretagogin. J Endocrinol 205:25–36

    Article  PubMed  CAS  Google Scholar 

  • Malaisse WJ, Blachier F, Pochet R, Manuel y Keenoy B, Sener A (1990) Calmodulin and calbindin in pancreatic islet cells. Adv Exp Med Biol 269:127–133

    PubMed  CAS  Google Scholar 

  • Marie JC, Bailbé D, Gylfe E, Portha B (2001) Defective glucose-dependent cytosolic Ca2+ handling in islets of GK and nSTZ rat models of type 2 diabetes. J Endocrinol 169:169–176

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka I, Giuili G, Poyard M, Stengel D, Parma J, Guellaen G, Hanoune J (1992) Localization of adenylyl and guanylyl cyclase in rat brain by in situ hybridization: comparison with calmodulin mRNA distribution. J Neurosci 12:3350–3360

    PubMed  CAS  Google Scholar 

  • Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M (2009) Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 417:651–666

    Article  PubMed  CAS  Google Scholar 

  • Mühlbauer E, Wolgast S, Finckh U, Peschke D, Peschke E (2004) Indication of circadian oscillations in the rat pancreas. FEBS Lett 564:91–96

    Article  PubMed  CAS  Google Scholar 

  • Niki I, Hidaka H (1999) Roles of intracellular Ca2+ receptors in the pancreatic beta-cell insulin secretion. Mol Cell Biochem 190:119–124

    Article  PubMed  CAS  Google Scholar 

  • Niki I, Yokokura H, Sudo T, Kato M, Hidaka H (1996) Ca2+ signalling and intracellular Ca2+ binding proteins. J Biochem (Tokyo) 120:685–698

    CAS  Google Scholar 

  • Ostenson CG, Khan A, Abdel-Halim SM, Guenifi A, Suzuki K, Goto Y, Efendic S (1993) Abnormal insulin secretion and glucose metabolism in pancreatic islets from the spontaneously diabetic GK rat. Diabetologia 36:3–8

    Article  PubMed  CAS  Google Scholar 

  • Oyadomari S, Takeda K, Takiguchi M, Gotoh T, Matsumoto M, Wada I, Akira E, Mori M (2001) Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmatic reticulum stress pathway. Proc Natl Acad Sci USA 98:10845–10850

    Article  PubMed  CAS  Google Scholar 

  • Oyadomari S, Araki E, Mori M (2002) Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7:335–345

    Article  PubMed  CAS  Google Scholar 

  • Parkash J, Chaudhry MA, Amer AS, Christakos S, Rhoten WB (2002) Intracellular calcium ion response to glucose in beta-cells of calbindin-D28k nullmutant mice and in betaHC13 cells overexpressing calbindin-D28k. Endocrine 18:221–229

    Article  PubMed  CAS  Google Scholar 

  • Peschke E, Peschke D (1998) Evidence for a circadian rhythm of insulin release from perifused rat pancreatic islets. Diabetologia 41:1085–1092

    Article  PubMed  CAS  Google Scholar 

  • Peschke E, Peschke D, Hammer T, Csernus VJ (1997) Influence of melatonin and serotonin on glucose-stimulated insulin release from perifused rat pancreatic islets in vitro. J Pineal Res 23:156–163

    Article  PubMed  CAS  Google Scholar 

  • Peschke E, Frese T, Chankiewitz E, Peschke D, Preiss U, Schneyer U, Spessert R, Mühlbauer E (2006) Diabetic Goto Kakizaki rats as well s type 2 diabetic patients show a decreased diurnal serum melatonin level and an increased pancreatic melatonin-receptor status. J Pineal Res 40:135–143

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed  Google Scholar 

  • Pochet R, Blachier F, Malaisse W, Parmentier M, Pasteels B, Pohl V, Résibois A, Rogers J, Roman A (1989) Calbindin-D28k in mammalian brain, retina, and endocrine pancreas: immunohistochemical comparison with calretinin. Adv Exp Med Biol 255:435–443

    PubMed  CAS  Google Scholar 

  • Polonsky KS, Sturis J, Van Cauter E (1998) Temporal profiles and clinical significance of pulsatile insulin secretion. Horm Res 49:178–184

    Article  PubMed  CAS  Google Scholar 

  • Reddy D, Pollock AS, Clark SA, Sooy K, Vasavada RC, Stewart AF, Honeyman T, Christakos S (1997) Transfection and overexpression of the calcium binding protein calbindin-D28k results in a stimulatory effect on insulin synthesis in a rat beta cell line (RIN 1046–38). Proc Natl Acad Sci USA 94:1961–1966

    Article  PubMed  CAS  Google Scholar 

  • Ribar TJ, Epstein PN, Overbeek PA, Means AR (1995) Targeted overexpression of an inactive calmodulin that binds Ca2+ to the mouse pancreatic beta-cell results in impaired secretion and chronic hyperglycemia. Endocrinology 136:106–115

    Article  PubMed  CAS  Google Scholar 

  • Roe MW, Philipson LH, Frangakis CJ, Kuznetsov A, Mertz RJ, Lancaster ME, Spencer B, Worley JF 3rd, Dukes ID (1994) Defective glucose-dependent endoplasmic reticulum Ca2+ sequestration in diabetic mouse islets of Langerhans. J Biol Chem 269:18279–18282

    PubMed  CAS  Google Scholar 

  • Roe MW, Worley JF III, Tokuyama Y, Philipson LH, Sturis J, Tang J, Dukes ID, Bell GI, Polonsky KS (1996) NIDDM is associated with loss of pancreatic beta-cell L-type Ca2+ channel activity. Am J Physiol 270:E133–E140

    PubMed  CAS  Google Scholar 

  • Schwaller B (2009) The continuing disappearance of “pure” Ca2+ buffers. Cell Mol Life Sci 66:275–300

    Article  PubMed  CAS  Google Scholar 

  • Schwaller B, Meyer M, Schiffmann S (2002) ‘New’ functions for ‘old’ proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 1:241–258

    Article  PubMed  CAS  Google Scholar 

  • Sener A, Malaisse-Lagae F, Ostenson CG, Malaisse WJ (1993) Metabolism of endogenous nutrients in islets of Goto-Kakizaki (GK) rats. Biochem J 296:329–334

    PubMed  CAS  Google Scholar 

  • Shieh JJ, Pan CJ, Mansfield BC, Chou JY (2004) The islet-specific glucose-6-phosphatase-related protein, implicated in diabetes, is a glycoprotein embedded in the endoplasmic reticulum membrane. FEBS Lett 562:160–164

    Article  PubMed  CAS  Google Scholar 

  • Skovhus KV, Bergholdt R, Erichsen C, Sparre T, Nerup J, Karlsen AE, Pociot F (2006) Identification and characterization of secretagogin promoter activity. Scand J Immunol 64:639–645

    Article  PubMed  CAS  Google Scholar 

  • Sooy K, Schermerhorn T, Noda M, Surana M, Rhoten WB, Meyer M, Fleischer N, Sharp GW, Christakos S (1999) Calbindin-D(28k) controls [Ca(2+)](i) and insulin release. Evidence obtained from calbindin-D(28k) knockout mice and beta cell lines. J Biol Chem 274:34343–34349

    Article  PubMed  CAS  Google Scholar 

  • Sugden MC, Christie MR, Ashcroft SJH (1979) Presence and possible role of calcium-dependent regulator (calmodulin) in rat islets of Langerhans. FEBS Lett 105:95–100

    Article  PubMed  CAS  Google Scholar 

  • Thongboonkerd V, Zheng S, McLeish KR, Epstein PN, Klein JB (2005) Proteomic identification and immunolocalization of increased renal calbindin-D28k expression in OVE26 diabetic mice. Rev Diab Stud 2:19–26

    Article  Google Scholar 

  • Uesugi R, Yamada M, Mizuguchi M, Baimbridge KG, Kim SU (1992) Calbindin D-28k and parvalbumin immunohistochemistry in developing rat retina. Exp Eye Res 54:491–499

    Article  PubMed  CAS  Google Scholar 

  • Váradi A, Molnár E, Ostenson CG, Ashcroft SJ (1996) Isoforms of endoplasmic reticulum Ca(2+)-ATPase are differentially expressed in normal and diabetic islets of Langerhans. Biochem J 319:521–527

    PubMed  Google Scholar 

  • Vetter SW, Leclerc E (2003) Novel aspects of calmodulin target recognition and activation. Eur J Biochem 270:404–414

    Article  PubMed  CAS  Google Scholar 

  • Wagner L, Oliyarnyk O, Gartner W, Nowotny P, Groeger M, Kaserer K, Waldhäusl W, Pasternack (2000) Cloning and expression of secretagogin, a novel neuroendocrine and pancreatic islet of Langerhans-specific Ca2+ binding protein. J Biol Chem 275:24740–24751

    Article  PubMed  CAS  Google Scholar 

  • Wang J, White AL (2000) Role of calnexin, calreticulin, and endoplasmic reticulum mannosidase I in apolipoprotein(a) intracellular targeting. Biochemistry 39:8993–9000

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Bhattacharjee A, Fu J, Li M (1996) Abnormally expressed low-voltage-activated calcium channels in beta-cells from NOD mice and a related clonal cell line. Diabetes 45:1678–1683

    Article  PubMed  CAS  Google Scholar 

  • Winsky L, Kuznicki J (1996) Antibody recognition of calcium-binding proteins depends on their calcium-binding status. J Neurochem 66:764–771

    Article  PubMed  CAS  Google Scholar 

  • Yokoi T, Nagayama S, Kajiwara R, Kawaguchi Y, Horiuchi R, Kamataki T (1993) Identification of protein disulfide isomerase and calreticulin as autoimmune antigens in LEC strain of rats. Biochim Biophys Acta 1158:339–344

    PubMed  CAS  Google Scholar 

  • Zaitsev S, Efanova I, Ostenson CG, Efendić S, Berggren PO (1997) Delayed Ca2+ response to glucose in diabetic GK rat. Biochem Biophys Res Commun 239:129–133

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Tanaka O, Sekiguchi M, He HJ, Yasuoka Y, Itoh H, Kawahara K, Abe H (2005) ATP-sensitive K+-channel subunits on the mitochondria and endoplasmic reticulum of rat cardiomyocytes. J Histochem Cytochem 53:1491–1500

    Article  PubMed  CAS  Google Scholar 

  • Zuber C, Spiro MJ, Guhl B, Spiro RG, Roth J (2000) Golgi apparatus immunolocalization of endomannosidase suggests post-endoplasmic reticulum glucose trimming: implications for quality control. Mol Biol Cell 11:4227–4240

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Prof. C. Wollheim from the Department of Medicine, University Geneva, Switzerland, for making the INS-1 cell line available to us. The authors also thank Dr. L. Litvak for technical assistance and Ms. Mühlbauer for linguistic assistance. This study was supported by a grant from ROUX-Anschubförderung FKZ 15/13, Martin Luther University, Halle-Wittenberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivonne Bazwinsky-Wutschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazwinsky-Wutschke, I., Wolgast, S., Mühlbauer, E. et al. Distribution patterns of calcium-binding proteins in pancreatic tissue of non-diabetic as well as type 2 diabetic rats and in rat insulinoma β-cells (INS-1). Histochem Cell Biol 134, 115–127 (2010). https://doi.org/10.1007/s00418-010-0721-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0721-y

Keywords

Navigation