Skip to main content
Log in

A new nanocomposite optical sensor based on polyurethane foam and gold nanorods for solid-phase spectroscopic determination of catecholamines

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

A new nanocomposite material based on gold nanorods and polyurethane foam was obtained, and a method for the determination of catecholamines with the use of this nanocomposite modified with silver nitrate was developed. The determination is based on the measuring hypsochromic shift of a short-wave surface plasmon resonance band in a diffuse reflection spectrum of the nanocomposite. This shift is caused by reduction of silver from silver ions on the surface of gold nanorods under the influence of catecholamines. Effects of time, pH, volume of the reaction mixture, concentration of silver ions, and catecholamines on the interaction were examined. The proposed method allows to determine dobutamine, epinephrine, norepinephrine and dopamine with the detection limits of 0.1, 0.07, 0.07, and 0.05 μg mL−1, respectively. The developed method can be applied to analysis of medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

References

  1. Dykman LA, Bogatyrev VA, Shchegolev SY, Khlebtsov NG (2008) Gold nanoparticles: synthesis, properties, and biomedical applications. Nauka, Moscow

    Google Scholar 

  2. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  3. Sun Y, Xia Y (2003) Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst 128:686–691

    Article  CAS  Google Scholar 

  4. Pasquato L, Pengo P, Scrimin P (2004) Functional gold nanoparticles for recognition and catalysis. J Mater Chem 14:3481–3487

    Article  CAS  Google Scholar 

  5. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744

    Article  CAS  Google Scholar 

  6. Paciotti GF, Kingston DGI, Tamarkin L (2006) Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev Res 67:47–54

    Article  CAS  Google Scholar 

  7. Terenteva EA, Apyari VV, Kochuk EV, Dmitrienko SG, Zolotov YA (2017) Use of silver nanoparticles in spectrophotometry. J Anal Chem 72:1138–1154

    Article  CAS  Google Scholar 

  8. Cai HH, Lin D, Wang J, Yang PH, Cai J (2014) Controlled side-by-side assembly of gold nanorods: a strategy for lead detection. Sensors Actuators B 196:252–259

    Article  CAS  Google Scholar 

  9. Stoeva SI, Huo F, Lee JS, Mirkin CA (2005) Three-layer composite magnetic nanoparticle probes for DNA. J Am Chem Soc 127:15362–15363

    Article  CAS  Google Scholar 

  10. Zhang X, Li D, Zhou XP (2006) From large 3D assembly to highly dispersed spherical assembly: weak and strong coordination mediated self-aggregation of Au colloids. New J Chem 30:706–711

    Article  CAS  Google Scholar 

  11. Apyari VV, Arkhipova VV, Dmitrienko SG, Zolotov YA (2014) Using gold nanoparticles in spectrophotometry. J Anal Chem 69:1–11

    Article  CAS  Google Scholar 

  12. He X, Liu H, Li Y, Wang S, Li Y, Wang N, Xiao J, Xu X, Zhu D (2005) Gold nanoparticle-based fluorometric and colorimetric sensing of copper(II) ions. Adv Mater 17:2811–2815

    Article  CAS  Google Scholar 

  13. Hashmi ASK (2007) Gold-catalyzed organic reactions. Chem Rev 107:3180–3211

    Article  CAS  Google Scholar 

  14. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936

    Google Scholar 

  15. Apyari VV, Dmitrienko SG, Arkhipova VV, Atnagulov AG, Gorbunova MV, Zolotov YA (2013) Label-free gold nanoparticles for the determination of neomycin. Spectrochim Acta A 115:416–420

    Article  CAS  Google Scholar 

  16. Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366

    Article  CAS  Google Scholar 

  17. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:R15–R27

    Article  CAS  Google Scholar 

  18. Schultz DA (2003) Plasmon resonant particles for biological detection. Curr Opin Biotechnol 14:13–22

    Article  CAS  Google Scholar 

  19. Liu JM, Wang XX, Jiao L, Cui ML, Lin LP, Zhang LH, Jiang SL (2013) Ultra-sensitive non-aggregation colorimetric sensor for detection of iron based on the signal amplification effect of Fe3+ catalyzing H2O2 oxidize gold nanorods. Talanta 116:199–204

    Article  CAS  Google Scholar 

  20. Bogatyrev VA, Dykman LA, Alekseeva AV, Khlebtsov BN, Novikova AP, Khlebtsov NG (2006) Observation of time-dependent single-particle light scattering from gold nanorods and nanospheres by using unpolarized dark-field microscopy. Proc SPIE 6164:1–10

    Google Scholar 

  21. Chang JY, Wu H, Chen H, Ling YC, Tan W (2005) Oriented assembly of Au nanorods using biorecognition system. Chem Commun:1092 – 1094

  22. Liao H, Hafner JH (2005) Gold nanorod bioconjugates. Chem Mater 17:4636–4641

    Article  CAS  Google Scholar 

  23. Alekseeva AV, Bogatyrev VA, Dykman LA, Khlebtsov BN, Trachuk LA, Melnikov AG, Khlebtsov NG (2005) Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay. Appl Opt 44:6285–6295

    Article  CAS  Google Scholar 

  24. Lee S, Nam YS, Choi SH, Lee Y, Lee KB (2016) Highly sensitive photometric determination of cyanide based on selective etching of gold nanorods. Microchim Acta 183:3035–3041

    Article  CAS  Google Scholar 

  25. Miranda-Andrades JR, Pérez-Gramatges A, Pandoli O, Romani EC, Aucélio RQ, Silva AR (2017) Spherical gold nanoparticles and gold nanorods for the determination of gentamicin. Spectrochim Acta A 172:126–134

    Article  CAS  Google Scholar 

  26. Haes AJ, Stuart DA, Nie S, Van Duyne RP (2004) Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms. J Fluoresc 14:355–367

    Article  CAS  Google Scholar 

  27. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665

    Article  CAS  Google Scholar 

  28. Liu JM, Wang XX, Cui ML, Lin LP, Jiang SL, Jiao L, Zhang LH (2013) A promising non-aggregation colorimetric sensor of AuNRs–Ag+ for determination of dopamine. Sensor Actuat B-Chemical 176:97–102

    Article  CAS  Google Scholar 

  29. Gorbunova MV, Apyari VV, Dmitrienko SG, Garshev AV (2016) Formation of core-shell Au@Ag nanorods induced by catecholamines: a comparative study and an analytical application. Anal Chim Acta 936:185–194

    Article  CAS  Google Scholar 

  30. Pérez-Juste J, Rodríguez-González B, Mulvaney P, Liz-Marzán L (2005) Optical control and patterning of gold-nanorod–poly(vinylalcohol) nanocomposite films. Adv Funct Mater 15:1065–1071

    Article  Google Scholar 

  31. Gorbunova MV, Matveeva MA, Apyari VV, Garshev AV, Volkov PA, Dmitrienko SG, Zolotov YA (2017) Sorption of gold nanorods on polyurethane foam as a way to obtain a nanocomposite material with a surface plasmon resonance for chemical analysis purposes. Nanotechnol Russ 12:185–192

    Article  CAS  Google Scholar 

  32. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  33. Whiting MJ, Doogue MP (2009) Advances in biochemical screening for pheochromocytoma using biogenic amines. Clin Biochem Rev 30:3–17

    Google Scholar 

  34. Pussard E, Neveux M, Guigueno N (2009) Reference intervals for urinary catecholamines and metabolites from birth to adulthood. Clin Biochem 42:536–539

    Article  CAS  Google Scholar 

  35. Kulinsky VI, Kolesnichenko LS (2002) Catecholamines: biochemistry, pharmacology, physiology, clinic. Vopr Med Khim 48:44–67 [in Russian]

    Google Scholar 

  36. Gerelkhuu Z, Jung D, Huy BT, Tawfik SM, Conte ML, Conte ED, Lee Y-I (2019) Highly selective and sensitive detection of catecholamines using NaLuGdF4:Yb3+/Er3+ upconversion nanoparticles decorated with metal ions. Sensor Actuat B-Chemical 284:172–178

    Article  CAS  Google Scholar 

  37. Thiagarajan S, Chen S-M (2009) Applications of nanostructured Pt-Au hybrid film for the simultaneous determination of catecholamines in the presence of ascorbic acid. J Solid State Electrochem 13:445–453

    Article  CAS  Google Scholar 

  38. Szilagyi I, Horvath L, Labadi I, Hernadi K, Palinko I, Kiss T (2006) Mimicking catalase and catecholase enzymes by copper(II)-containing complexes. Cent Eur J Chem 4:118–134

    CAS  Google Scholar 

  39. Fouad DM, El-Said WA (2016) Selective electrochemical detection of epinephrine using gold nanoporous film. J Nanomater 2016

  40. Lopez MS-P, Leroux F, Mousty C (2010) Amperometric biosensors based on LDH-ALGINATE hybrid nanocomposite for aqueous and non-aqueous phenolic compounds detection. Sensor Actuat B-Chemical 150:36–42

    Article  Google Scholar 

  41. Brondany D, Scheeren CW, Dupont J, Vieira IC (2012) Halloysite clay nanotubes and platinum nanoparticles dispersed in ionic liquid applied in the development of a catecholamine biosensor. Analyst 137:3732–3739

    Article  Google Scholar 

Download references

Acknowledgments

Some studies were performed using instrumentation provided according to the M.V. Lomonosov Moscow State University Program of Development.

Funding

This work was financially supported by the Russian Science Foundation [grant N 18-73-10001].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Apyari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material Figure s1 contains poor quality of text inside the artwork. Please do not re-use the file that we have rejected or attempt to increase its resolution and re-save. It is originally poor, therefore, increasing the resolution will not solve the quality problem. We suggest that you provide us the original format. We prefer replacement figures containing vector/editable objects rather than embedded images. Preferred file formats are eps, ai, tiff and pdf.Figure S1 of high quality has been attached

ESM 1

(PDF 877 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbunova, M.V., Apyari, V.V., Zolotov, I.I. et al. A new nanocomposite optical sensor based on polyurethane foam and gold nanorods for solid-phase spectroscopic determination of catecholamines. Gold Bull 52, 115–124 (2019). https://doi.org/10.1007/s13404-019-00267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-019-00267-9

Keywords

Navigation