Skip to main content
Log in

Electrochemical sensor based on nanocomposite of nickel oxide nanoparticles and polypyrrole for the detection of metoprolol as a doping agent in biological fluids and food samples

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this work, a new electrochemical sensor for the detection of the doping agent metoprolol (MTP) in food samples and bodily fluids is presented. The sensor’s foundation is a nanocomposite made of polypyrrole (PPy) and nickel oxide nanoparticles (NiO NPs) on a glassy carbon electrode (GCE). Pyrole was electropolymerized to create the nanocomposite, and then NiO NPs were electrodedeposited on the GCE surface (NiO NPs/PPy/GCE). By combining the benefits of PPy with NiO NPs, this technique offers good electrocatalytic activity and a large surface area for analyte interaction. The nanocomposite was characterized using structural analyses such as scanning electron microscopy (SEM), X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). These analyses revealed a network-like structure that improved the accessibility of the electrolyte ions and showed that the nanocomposite had been successfully deposited on the GCE surface. The electrochemical MTP sensor was examined using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) tests. The sensor’s sensitivity was 0.03074 μA/μM, and it demonstrated a linear connection between the peak currents and the MTP concentrations (5–1600μM). The suggested sensor’s limit of quantification (LOQ) and limit of detection (LOD) were determined to be 0.581 μM and 0.018 μM, respectively. The prepared urine sample produced acceptable recovery rates in the range of 98.40–99.86% in the real sample analyses, together with low relative standard deviation values (below 4.16%). In a similar vein, the prepared apple juice sample analysis revealed low relative standard deviation values (less than 4.28%) and respectable recovery rates ranging from 97.20 to 99.66%. The results showed low relative standard deviation values and good recovery rates, demonstrating the high precision and dependability of the suggested approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.K. Podesser, S. Schwarzacher, W. Zwoelfer, T.M. Binder, E. Wolner, R. Seitelberger, J. Thorac. Cardiovasc. Surg. 110, 1461 (1995)

    Article  CAS  PubMed  Google Scholar 

  2. M. Schürks, H.-C. Diener, P. Goadsby, Curr. Treat. Options Neurol. 10, 20 (2008)

    Article  PubMed  Google Scholar 

  3. A.G. Grigoras, Environ. Chem. Lett. 17, 1209 (2019)

    Article  CAS  Google Scholar 

  4. J. Radjenovic, B.I. Escher, K. Rabaey, Water Res. 45, 3205 (2011)

    Article  CAS  PubMed  Google Scholar 

  5. A.A. Wassel, N. Alzamel, M. Alkhaldi, N. Ouerfelli, A. Al-Arfaj, Asian J. Chem. 29, 1351 (2017)

    Article  CAS  Google Scholar 

  6. P.W. Erhardt, L. Matos, Analogue-based Drug Discovery. 193 (2006)

  7. C. Wang, X. Zhang, Y. Liu, J. Li, L. Zhu, Y. Lu, X. Guo, D. Chen, Anal. Chim. Acta. 1221, (2022)

  8. M.B. Hamner, G.W. Arana, Encyclopedia Stress. 1, 312 (2000)

    Google Scholar 

  9. K. Heusser, H. Schobel, A. Adamidis, T. Fischer, H. Frank, Kidney Blood Press. Res. 25, 34 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. Y.A. Lin, W.Y. Chiang, W.C.W. Chang, M.T. Kuo, A. Chen, M.C. Hsu, Drug. Test. Anal. 15, 75 (2023)

    Article  CAS  PubMed  Google Scholar 

  11. A.O. Colmain, T. Edition, Ir. Sports Council. 3 (2006)

  12. M. Verroken, Drugs Sport. 39 (2003)

  13. G. Lu, L. Duan, S. Meng, P. Cai, S. Ding, X. Wang, Dyes Pigm. 220, (2023)

  14. S.H. Meghani, D. Becker, Am. J. Crit. Care. 10, 417 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. B. Bai, J. Wang, Z. Zhai, T. Xu, Transp. Porous Media. 117, (2017)

  16. G. Alpdoğan, S. Sungur, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 55, 2705 (1999)

    Article  ADS  Google Scholar 

  17. B. Yilmaz, S. Arslan, V. Akba, Talanta. 80, 346 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. Y. Zhang, H.-L. Wu, A.-L. Xia, S.-H. Zhu, Q.-J. Han, R.-Q. Yu, Anal. Bioanal. Chem. 386, 1741 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. M. Suchanek, B. Paczosa-Bator, R. Piech, Membranes. 13, 890 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A.O. Alnajjar, A.M. Idris, M.V. Attimarad, A.M. Aldughaish, R.E. Elgorashe, J. Chromatogr. Sci. 51, 92 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. B. Nikahd, M.A. Khalilzadeh, J. Mol. Liq. 215, 253 (2016)

    Article  CAS  Google Scholar 

  22. P. Ebrahimi, S.-A. Shahidi, M. Bijad, J. Food Meas. Charact. 14, 3389 (2020)

    Article  Google Scholar 

  23. A.D. Ambaye, K.K. Kefeni, S.B. Mishra, E.N. Nxumalo, B. Ntsendwana, Talanta. 225, (2021)

  24. G. Lu, S. Yu, L. Duan, S. Meng, S. Ding, T. Dong, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 305, (2024)

  25. U. Solaem Akond, K. Barman, A. Mahanta, S. Jasimuddin, Electroanalysis. 33, 900 (2021)

    Article  CAS  Google Scholar 

  26. A. Ramanavičius, A. Ramanavičienė, A. Malinauskas, Electrochim. Acta. 51, 6025 (2006)

    Article  Google Scholar 

  27. R. Prasad, B.R. Bhat, Sens. Actuators B. 220, 81 (2015)

    Article  CAS  Google Scholar 

  28. J. Xu, R. Ma, S. Stankovski, X. Liu, X. Zhang, Foods. 11, (2022)

  29. J. Chen, Q. Xu, Y. Shu, X. Hu, Talanta. 184, 136 (2018)

    Article  CAS  PubMed  Google Scholar 

  30. H. Bakhsh, J.A. Buledi, N.H. Khand, B. Junejo, A.R. Solangi, A. Mallah, S.T.H. Sherazi, J. Food Meas. Charact. 15, 2695 (2021)

    Article  Google Scholar 

  31. J. Zhong, H. Zhao, Y. Cheng, T. Feng, M. Lan, S. Zuo, J. Electroanal. Chem. 902, 115815 (2021)

    Article  CAS  Google Scholar 

  32. F. Teles, L. Fonseca, Mater. Sci. Engineering: C. 28, 1530 (2008)

    Article  CAS  Google Scholar 

  33. M. Afzali, A. Mostafavi, T. Shamspur, Talanta. 196, 92 (2019)

    Article  CAS  PubMed  Google Scholar 

  34. A. Nagarajan, V. Sethuraman, T. Sridhar, R. Sasikumar, J. Ind. Eng. Chem. 120, 460 (2023)

    Article  CAS  Google Scholar 

  35. C. Lu, S. Luo, X. Wang, J. Li, Y. Li, Y. Shen, J. Wang, Coord. Chem. Rev. 501, (2024)

  36. B. Bai, F. Bai, Q. Nie, X. Jia, Powder Technol. 416, (2023)

  37. R. Saeed, H. Feng, X. Wang, X. Zhang, Z. Fu, Food Control. 137, (2022)

  38. Y. Wang, Z. Nie, X. Li, R. Wang, Y. Zhao, H. Wang, ACS Sustain. Chem. Eng. 10, 6082 (2022)

    Article  CAS  Google Scholar 

  39. L. Özcan, Y. Şahin, Sens. Actuators B. 127, 362 (2007)

    Article  Google Scholar 

  40. G. Emir, Y. Dilgin, A. Ramanaviciene, A. Ramanavicius, Microchem. J. 161, 105751 (2021)

    Article  CAS  Google Scholar 

  41. G. Anandha Babu, G. Ravi, M. Navaneethan, M. Arivanandhan, Y. Hayakawa, J. Mater. Sci.: Mater. Electron. 25, 5231 (2014)

    CAS  Google Scholar 

  42. Y. Zhang, X. Xiao, H. Feng, M.A. Nikitina, X. Zhang, Q. Zhao, Front. Sustainable Food Syst. 7, (2023)

  43. H. Liu, Q. Zhao, K. Wang, Z. Lu, F. Feng, Y. Guo, RSC Adv. 9, 6890 (2019)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. W. Meng, Y. Yang, R. Zhang, Z. Wu, X. Xiao, Chem. Eng. J. 473, (2023)

  45. B. Bai, T. Xu, Q. Nie, P. Li, Int. J. Heat Mass Transf. 153, (2020)

  46. H. Peçenek, F.K. Dokan, M.S. Onses, E. Yılmaz, E. Sahmetlioglu, Mater. Res. Bull. 149, 111745 (2022)

    Article  Google Scholar 

  47. N. Wei, L. Yin, C. Yin, J. Liu, S. Wang, W. Qiao, F. Zeng, Gas Sci. Eng. 119, (2023)

  48. C. Zhao, Q. Wan, J. Dai, J. Zhang, F. Wu, S. Wang, H. Long, J. Chen, C. Chen, C. Chen, Front. Optoelectron. 10, 363 (2017)

    Article  Google Scholar 

  49. M. Jiang, L. Zhu, Y. Liu, J. Li, Y. Diao, C. Wang, X. Guo, D. Chen, Talanta. 257, (2023)

  50. Y. Chen, Z. Lin, R. Hao, H. Xu, C. Huang, J. Hazard. Mater. 371, 8 (2019)

    Article  CAS  PubMed  Google Scholar 

  51. I. Preda, R. Mossanek, M. Abbate, L. Alvarez, J. Méndez, A. Gutiérrez, L. Soriano, Surf. Sci. 606, 1426 (2012)

    Article  CAS  ADS  Google Scholar 

  52. X. Zhao, B. Fan, N. Qiao, R.A. Soomro, R. Zhang, B. Xu, Appl. Surf. Sci. 642, (2024)

  53. W. Yan, H.-Y. Zeng, K. Zhang, K.-M. Zou, Ionics. 29, 3759 (2023)

    Article  CAS  Google Scholar 

  54. J. Chen, Q. Sheng, J. Zheng, RSC Adv. 5, 105372 (2015)

    Article  CAS  ADS  Google Scholar 

  55. B. Koçak, Y. İpek, A. Keçeci, Diam. Relat. Mater. 131, 109558 (2023)

    Article  ADS  Google Scholar 

  56. Ö. Güngör, C. Ben Ali Hassine, M. Burç, S. Köytepe, Titretir Duran. Anal. Bioanalytical Electrochem. 14, 290 (2022)

    Google Scholar 

  57. S.I. Khan, P. Thakur, A. Dongapure, J. Pharm. Negat. Results. 13, 1391 (2022)

    CAS  Google Scholar 

  58. B. Mutharani, P. Ranganathan, S.-M. Chen, T.-W. Chen, M.A. Ali, A.H. Mahmoud, Ultrason. Sonochem. 64, 105008 (2020)

    Article  CAS  PubMed  Google Scholar 

  59. A.H. Kamal, S.F. Hammad, D.N. Kamel, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 294, 122549 (2023)

    Article  CAS  Google Scholar 

  60. N. Thakker, G. Shinde, A. Dharamsi, V. Choudhari, S. Pawar, Res. J. Pharm. Technol. 15, 2909 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqing Wu or Xiaozhen Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wu, X. & Chen, X. Electrochemical sensor based on nanocomposite of nickel oxide nanoparticles and polypyrrole for the detection of metoprolol as a doping agent in biological fluids and food samples. Food Measure (2024). https://doi.org/10.1007/s11694-024-02475-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02475-0

Keywords

Navigation