Skip to main content

Advertisement

Log in

Aberrant N-glycosylation in cancer: MGAT5 and β1,6-GlcNAc branched N-glycans as critical regulators of tumor development and progression

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Changes in protein glycosylation are widely observed in tumor cells. N-glycan branching through adding β1,6-linked N-acetylglucosamine (β1,6-GlcNAc) to an α1,6-linked mannose, which is catalyzed by the N-acetylglucosaminyltransferase V (MGAT5 or GnT-V), is one of the most frequently observed tumor-associated glycan structure formed. Increased levels of this branching structure play a pro-tumoral role in various ways, for example, through the stabilization of growth factor receptors, the destabilization of intercellular adhesion, or the acquisition of a migratory phenotype.

Conclusion

In this review, we provide an updated and comprehensive summary of the physiological and pathophysiological roles of MGAT5 and β1,6-GlcNAc branched N-glycans, including their regulatory mechanisms. Specific emphasis is given to the role of MGAT5 and β1,6-GlcNAc branched N-glycans in cellular mechanisms that contribute to the development and progression of solid tumors. We also provide insight into possible future clinical implications, such as the use of MGAT5 as a prognostic biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

5-AZA-dC:

5-Aza-2′-Deoxycytidine

ACC:

Adrenocortical carcinoma

AJ:

Adherens junctions

AKT:

Protein kinase b

Asn:

Asparagine

BAX:

BCL2-associated X protein

BCL2:

B-cell lymphoma 2

BLCA:

Bladder urothelial carcinoma

BRCA:

Breast invasive carcinoma

CA19-9:

Carbohydrate antigen 19 − 9

CA72-4:

Cancer antigen 72 − 4

CAR:

Chimeric antigen receptors

CEACAM6:

Carcinoembryonic antigen-related cell adhesion molecule 6

CESC:

Cervical squamous cell carcinoma and endocervical adenocarcinoma

CHOL:

Cholangio carcinoma

CMS:

Consensus molecular subtypes

COAD:

Colon adenocarcinoma

CRC:

Colorectal cancer

CRISPR/Cas9:

Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9

DC-SIGN:

Dendritic cell-specific ICAM-3 grabbing non-integrin

DLBC:

Lymphoid neoplasm diffuse large B-cell lymphoma

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial-mesenchymal transition

ER:

Endoplasmic reticulum

ERAD:

Endoplasmic reticulum-associated protein degradation

ESCA:

Esophageal carcinoma

ETS:

Erythroblast transformation-specific transcription factor

FZD-7:

Frizzled class receptor 7

Gal:

Galactose

GATA:

GATA-binding protein

GBM:

Glioblastoma multiforme

GEPIA2:

Gene expression profiling interactive analysis 2

GlcNAc:

N-acetylglucosamine

GPI:

Glycosylphosphatidylinositol

GTEx:

Genotype-tissue expression project

HBP:

Hexosamine biosynthetic pathway

HGF:

Hepatocyte growth factor

HIF1A:

Hypoxia inducible factor 1

HK:

Hexokinase

HNSC:

Head and neck squamous cell carcinoma

IBD:

Inflammatory bowel disease

IFNγ:

Interferon gamma

IGF1:

Insulin-like growth factor 1

IGF-1R:

Insulin-like growth factor 1 receptor

IGF2BP1:

Insulin Like Growth Factor 2 MRNA Binding Protein 1

IgG:

Immunoglobulin G

INSR:

Insulin receptor

KICH:

Kidney chromophobe

KIRC:

Kidney renal clear cell carcinoma

KIRP:

Kidney renal papillary cell carcinoma

LacNAc:

N-acetyl-lactosamine

LAML:

Acute myeloid leukemia

LGG:

Brain lower grade glioma

LIHC:

Liver hepatocelular carcinoma

L-PHA:

Phaseolus vulgaris leucoagglutinin

LUAD:

Lung adenocarcinoma

LUSC:

Lung squamous cell carcinoma

m6a:

N6 methyladenosine

mAbs:

Monoclonal antibodies

Man:

Mannose

MAPK:

Mitogen-activated protein kinase

MESO:

Mesothelioma

MGAT:

N-acetylglucosaminyltransferase

GnT-V:

N-acetylglucosaminyltransferase V

miR-124:

MicroRNA 124

mRNA:

Messenger RNA

MSI:

Microsatellite instability

MT1-MMP:

Membrane-type matrix metalloproteinase-1

MYB:

v-Myb myeloblastosis viral oncogene homolog

mTORC1:

Mammalian target of rapamycin complex 1

ncRNAs:

Non-coding RNAs

NSCLC:

Non-small cell lung cancer

O-GlcNAc:

O-linked β-N-acetylglucosamine

OST:

Oligosaccharyltransferase

OV:

Ovarian serous cystadenocarcinoma

PAAD:

Pancreatic adenocarcinoma

PCPG:

Pheochromocytoma and paraganglioma

PD-1:

Programmed cell death protein-1

PD-L1:

Programmed death ligand-1

PI3K:

Phosphoinositide 3-kinase

PRAD:

Prostate adenocarcinoma

PTEN:

Phosphatase and tensin homolog

PTMs:

Post-translational modifications

RAF:

Cellular homolog of viral raf gene

RAS:

Rat sarcoma viral oncogene homolog

READ:

Rectum adenocarcinoma

RNA:

Ribonucleic acid

SARC:

Sarcoma

SCID:

Severe combined immunodeficiency

Ser:

Serine

siRNA:

Small interfering RNA

SKCM:

Skin cutaneous melanoma

SPPL3:

Signal peptide peptidase like 3

SRC:

v-src avian sarcoma viral oncogene homolog

STAD:

Stomach adenocarcinoma

TCGA:

The cancer genome atlas

TCR:

T-cell receptor

TGCT:

Testicular germ cell tumors

TGF-β1:

Transforming growth factor beta

TGF-βR:

Transforming growth factor beta receptor

THCA:

Thyroid carcinoma

Thr:

Threonine

THYM:

Thymoma

TIM-4:

T-cell immunoglobulin domain and mucin domain 4

TIMP-1:

Tissue inhibitor of metalloproteinase-1

UC:

Ulcerative colitis

UCEC:

Uterine corpus endometrial carcinoma

UCS:

Uterine carcinosarcoma

UDP-GlcNAc:

Uridine diphosphate N-acetylglucosamine

UVM:

Uveal melanoma

WNT:

Wingless-type MMTV integration site family

β1,6-GlcNAc:

β1,6-linked N-acetylglucosamine

References

  1. R.A. Flynn, K. Pedram, S.A. Malaker, P.J. Batista, B.A.H. Smith, A.G. Johnson, B.M. George, K. Majzoub, P.W. Villalta, J.E. Carette, C.R. Bertozzi, Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell 184, 3109-3124.e3122 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. G.A. Khoury, R.C. Baliban, C.A. Floudas, Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci. Rep 1, 90 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. Varki, R.D. Cummings, J.D. Esko, P. Stanley, G.W. Hart, M. Aebi, D. Mohnen, T. Kinoshita, N.H. Packer, J.H. Prestegard, R.L. Schnaar, P.H. Seeberger, Essentials of glycobiology, 4th edn. (Cold Spring Harbor, New York, 2022), pp. 103–115

  4. R.D. Cummings, I.S. Trowbridge, S. Kornfeld, A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: alpha-D-mannoside beta 1,6 N-acetylglucosaminyltransferase. J. Biol. Chem 257, 13421–13427 (1982)

    Article  CAS  PubMed  Google Scholar 

  5. Y. Lu, W. Chaney, Induction of N-acetylglucosaminyltransferase V by elevated expression of activated or proto-Ha-ras oncogenes. Mol. Cell. Biochem 122, 85–92 (1993)

    Article  CAS  PubMed  Google Scholar 

  6. H. Saito, J. Gu, A. Nishikawa, Y. Ihara, J. Fujii, Y. Kohgo, N. Taniguchi, Organization of the human N-acetylglucosaminyltransferase V gene. Eur. J. Biochem 233, 18–26 (1995)

    Article  CAS  PubMed  Google Scholar 

  7. R. Kang, H. Saito, Y. Ihara, E. Miyoshi, N. Koyama, Y. Sheng, N. Taniguchi, Transcriptional regulation of the N-acetylglucosaminyltransferase V gene in human bile duct carcinoma cells (HuCC-T1) is mediated by Ets-1. J. Biol. Chem 271, 26706–26712 (1996)

    Article  CAS  PubMed  Google Scholar 

  8. J.H. Ko, E. Miyoshi, K. Noda, A. Ekuni, R. Kang, Y. Ikeda, N. Taniguchi, Regulation of the GnT-V promoter by transcription factor Ets-1 in various cancer cell lines. J. Biol. Chem 274, 22941–22948 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. P. Buckhaults, L. Chen, N. Fregien, M. Pierce, Transcriptional regulation of N-acetylglucosaminyltransferase V by the src oncogene. J. Biol. Chem 272, 19575–19581 (1997)

    Article  CAS  PubMed  Google Scholar 

  10. G. Greville, E. Llop, J. Howard, S.F. Madden, A.S. Perry, R. Peracaula, P.M. Rudd, A. McCann, Saldova. 5-AZA-dC induces epigenetic changes associated with modified glycosylation of secreted glycoproteins and increased EMT and migration in chemo-sensitive cancer cells. Clin. Epigenetics 13, 34 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Y. Yang, J. Wu, F. Liu, J. He, F. Wu, J. Chen, Z. Jiang, Promotes the liver cancer stem cell phenotype by regulating MGAT5 mRNA stability by m6A RNA methylation. Stem Cells Dev 30, 1115–1125 (2021)

    CAS  PubMed  Google Scholar 

  12. G. Yan, Y. Li, L. Zhan, S. Sun, J. Yuan, T. Wang, Y. Yin, Z. Dai, Y. Zhu, Z. Jiang, L. Liu, Y. Fan, F. Yang, W. Hu, Decreased mir-124-3p promoted breast cancer proliferation and metastasis by targeting MGAT5. Am. J. Cancer Res 9, 585–596 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. S. Marshall, V. Bacote, R.R. Traxinger, Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem 266, 4706–4712 (1991)

    Article  CAS  PubMed  Google Scholar 

  14. K. Sasai, Y. Ikeda, T. Fujii, T. Tsuda, N. Taniguchi, UDP-GlcNAc concentration is an important factor in the biosynthesis of beta1,6-branched oligosaccharides: regulation based on the kinetic properties of N-acetylglucosaminyltransferase V. Glycobiology 12, 119–127 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. G. Kroemer, J. Pouyssegur, Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13, 472–482 (2008)

    Article  CAS  PubMed  Google Scholar 

  16. N.M. Akella, L. Ciraku, M.J. Reginato, Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer. BMC Biol 17, 52 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. K.S. Lau, J.W. Dennis, N-Glycans in cancer progression. Glycobiology 18, 750–760 (2008)

    Article  CAS  PubMed  Google Scholar 

  18. Y. Kizuka, N. Taniguchi, Enzymes for N-Glycan branching and their genetic and nongenetic regulation in cancer. Biomolecules 6, 25 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Y. Zhao, T. Nakagawa, S. Itoh, K. Inamori, T. Isaji, Y. Kariya, A. Kondo, E. Miyoshi, K. Miyazaki, N. Kawasaki, N. Taniguchi, J. Gu, N-acetylglucosaminyltransferase III antagonizes the effect of N-acetylglucosaminyltransferase V on alpha3beta1 integrin-mediated cell migration. J. Biol. Chem 281, 32122–32130 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. Q. Xu, R. Akama, T. Isaji, Y. Lu, H. Hashimoto, Y. Kariya, T. Fukuda, Y. Du, J. Gu, Wnt/beta-catenin signaling down-regulates N-acetylglucosaminyltransferase III expression: the implications of two mutually exclusive pathways for regulation. J. Biol. Chem 286, 4310–4318 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. R.F. Osuka, T. Hirata, M. Nagae, M. Nakano, H. Shibata, R. Okamoto, Y. Kizuka, N-acetylglucosaminyltransferase-V requires a specific noncatalytic luminal domain for its activity toward glycoprotein substrates. J. Biol. Chem 298, 101666 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. M. Nagae, Y. Yamaguchi, N. Taniguchi, Y. Kizuka, 3D structure and function of glycosyltransferases involved in N-glycan maturation. Int. J. Mol. Sci 21, 437 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Voss, U. Künzel, F. Higel, P.H. Kuhn, A. Colombo, A. Fukumori, M. Haug-Kröper, B. Klier, G. Grammer, A. Seidl, B. Schröder, R. Obst, H. Steiner, S.F. Lichtenthaler, C. Haass, R. Fluhrer, Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-glycosylation. EMBO J 33, 2890–2905 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. M. Terao, A. Ishikawa, S. Nakahara, A. Kimura, A. Kato, K. Moriwaki, Y. Kamada, H. Murota, N. Taniguchi, I. Katayama, E. Miyoshi, Enhanced epithelial-mesenchymal transition-like phenotype in N-acetylglucosaminyltransferase V transgenic mouse skin promotes wound healing. J. Biol. Chem 286, 28303–28311 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. E. Miyoshi, M. Terao, Y. Kamada, Physiological roles of N-acetylglucosaminyltransferase V(GnT-V) in mice. BMB Rep 45, 554–559 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. A. Kimura, M. Terao, A. Kato, T. Hanafusa, H. Murota, I. Katayama, E. Miyoshi, Upregulation of N-acetylglucosaminyltransferase-V by heparin-binding EGF-like growth factor induces keratinocyte proliferation and epidermal hyperplasia. Exp. Dermatol 21, 515–519 (2012)

    Article  CAS  PubMed  Google Scholar 

  27. S.S. Pinho, J. Figueiredo, J. Cabral, S. Carvalho, J. Dourado, A. Magalhães, F. Gärtner, A.M. Mendonfa, T. Isaji, J. Gu, F. Carneiro, R. Seruca, N. Taniguchi, C.A. Reis, E-cadherin and adherens-junctions stability in gastric carcinoma: functional implications of glycosyltransferases involving N-glycan branching biosynthesis, N-acetylglucosaminyltransferases III and V. Biochim. Biophys. Acta 1830, 2690–2700 (2013)

    Article  CAS  Google Scholar 

  28. M. Yoshimura, Y. Ihara, Y. Matsuzawa, N. Taniguchi, Aberrant glycosylation of E-cadherin enhances cell-cell binding to suppress metastasis. J. Biol. Chem 271, 13811–13815 (1996)

    Article  CAS  PubMed  Google Scholar 

  29. A. Lagana, J.G. Goetz, P. Cheung, A. Raz, J.W. Dennis, I.R. Nabi, Galectin binding to Mgat5-modified N-glycans regulates fibronectin matrix remodeling in tumor cells. Mol. Cell. Biol 26, 3181–3193 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. M.D. Langer, H. Guo, N. Shashikanth, J.M. Pierce, D.E. Leckband, N-glycosylation alters cadherin-mediated intercellular binding kinetics. J. Cell. Sci 125, 2478–2485 (2012)

    CAS  PubMed  Google Scholar 

  31. P. Cheung, J. Pawling, E.A. Partridge, B. Sukhu, M. Grynpas, J.W. Dennis, Metabolic homeostasis and tissue renewal are dependent on beta1,6GlcNAc-branched N-glycans. Glycobiology 17, 828–837 (2007)

    Article  CAS  PubMed  Google Scholar 

  32. M.C. Ryczko, J. Pawling, R. Chen, A.M. Abdel Rahman, K. Yau, J.K. Copeland, C. Zhang, A. Surendra, D.S. Guttman, D. Figeys, J.W. Dennis, Metabolic reprogramming by hexosamine biosynthetic and golgi N-Glycan branching pathways. Sci. Rep 6, 23043 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. A. Johswich, C. Longuet, J. Pawling, A. Abdel Rahman, M. Ryczko, D.J. Drucker, J.W. Dennis, N-glycan remodeling on glucagon receptor is an effector of nutrient sensing by the hexosamine biosynthesis pathway. J. Biol. Chem 289, 15927–15941 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A.M. Abdel Rahman, M. Ryczko, M. Nakano, J. Pawling, T. Rodrigues, A. Johswich, N. Taniguchi, J.W. Dennis, Golgi N-glycan branching N-acetylglucosaminyltransferases I, V and VI promote nutrient uptake and metabolism. Glycobiology 25, 225–240 (2015)

    Article  CAS  PubMed  Google Scholar 

  35. K.S. Lau, E.A. Partridge, A. Grigorian, C.I. Silvescu, V.N. Reinhold, M. Demetriou, J.W. Dennis, Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129, 123–134 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. J.W. Dennis, J. Pawling, P. Cheung, E. Partridge, M. Demetriou, UDP-N-acetylglucosamine:alpha-6-D-mannoside beta1,6 N-acetylglucosaminyltransferase V (Mgat5) deficient mice. Biochim. Biophys. Acta 1573, 414–422 (2002)

    Article  CAS  PubMed  Google Scholar 

  37. M. Demetriou, M. Granovsky, S. Quaggin, J.W. Dennis, Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409, 733–739 (2001)

    Article  CAS  PubMed  Google Scholar 

  38. J. Kuball, B. Hauptrock, V. Malina, E. Antunes, R.H. Voss, M. Wolfl, R. Strong, M. Theobald, P.D. Greenberg, Increasing functional avidity of TCR-redirected T cells by removing defined N-glycosylation sites in the TCR constant domain. J. Exp. Med 206, 463–475 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. A.M. Dias, A. Correia, M.S. Pereira, C.R. Almeida, I. Alves, V. Pinto, T.A. Catarino, N. Mendes, M. Leander, M.T. Oliva-Teles, L. Maia, C. Delerue-Matos, N. Taniguchi, M. Lima, I. Pedroto, R. Marcos-Pinto, P. Lago, C.A. Reis, M. Vilanova, S.S. Pinho, Metabolic control of T cell immune response through glycans in inflammatory bowel disease. Proc. Natl. Acad. Sci. U.S.A. 115, E4651-E4660 (2018)

  40. Y. Kamada, K. Mori, H. Matsumoto, S. Kiso, Y. Yoshida, S. Shinzaki, N. Hiramatsu, M. Ishii, K. Moriwaki, N. Kawada, T. Takehara, E. Miyoshi, N-Acetylglucosaminyltransferase V regulates TGF-β response in hepatic stellate cells and the progression of steatohepatitis. Glycobiology 22, 778–787 (2012)

    Article  CAS  PubMed  Google Scholar 

  41. A.M. Dias, J. Dourado, P. Lago, J. Cabral, R. Marcos-Pinto, P. Salgueiro, C.R. Almeida, S. Carvalho, S. Fonseca, M. Lima, M. Vilanova, M. Dinis-Ribeiro, C.A. Reis, S.S. Pinho, Dysregulation of T cell receptor N-glycosylation: a molecular mechanism involved in ulcerative colitis. Hum. Mol. Genet 23, 2416–2427 (2014)

    Article  CAS  PubMed  Google Scholar 

  42. T. Saito, E. Miyoshi, K. Sasai, N. Nakano, H. Eguchi, K. Honke, N. Taniguchi, A secreted type of beta 1,6-N-acetylglucosaminyltransferase V (GnT-V) induces tumor angiogenesis without mediation of glycosylation: a novel function of GnT-V distinct from the original glycosyltransferase activity. J. Biol. Chem 277, 17002–17008 (2002)

    Article  CAS  PubMed  Google Scholar 

  43. R. Saldova, J.M. Reuben, U.M. Abd Hamid, P.M. Rudd, M. Cristofanilli, Levels of specific serum N-glycans identify breast cancer patients with higher circulating tumor cell counts. Ann. Oncol 22, 1113–1119 (2011)

    Article  CAS  PubMed  Google Scholar 

  44. M.K. Sethi, H. Kim, C.K. Park, M.S. Baker, Y.K. Paik, N.H. Packer, W.S. Hancock, S. Fanayan, M. Thaysen-Andersen, In-depth N-glycome profiling of paired colorectal cancer and non-tumorigenic tissues reveals cancer-, stage- and EGFR-specific protein N-glycosylation. Glycobiology 25, 1064–1078 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. Z. Tang, B. Kang, C. Li, T. Chen, Z. Zhang, GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res 47, W556–W560 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. H. Yamamoto, J. Swoger, S. Greene, T. Saito, J. Hurh, C. Sweeley, J. Leestma, E. Mkrdichian, L. Cerullo, A. Nishikawa, Y. Ihara, N. Taniguchi, J.R. Moskal, Beta1,6-N-acetylglucosamine-bearing N-glycans in human gliomas: implications for a role in regulating invasivity. Cancer Res 60, 134–142 (2000)

    CAS  PubMed  Google Scholar 

  47. P. Hägerbäumer, M. Vieth, M. Anders, U. Schumacher, Lectin histochemistry shows WGA, PHA-L and HPA binding increases during progression of human colorectal Cancer. Anticancer Res 35, 5333–5339 (2015)

    PubMed  Google Scholar 

  48. W.K. Seelentag, W.P. Li, S.F. Schmitz, U. Metzger, P. Aeberhard, P.U. Heitz, J. Roth, Prognostic value of beta1,6-branched oligosaccharides in human colorectal carcinoma. Cancer Res 58, 5559–5564 (1998)

    CAS  PubMed  Google Scholar 

  49. T. Petretti, W. Kemmner, B. Schulze, P.M. Schlag, Altered mRNA expression of glycosyltransferases in human colorectal carcinomas and liver metastases. Gut 46, 359–366 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. M.C. Silva, Â Fernandes, M. Oliveira, C. Resende, A. Correia, J.C. de-Freitas-Junior, A. Lavelle, J. Andrade-da-Costa, M. Leander, H. Xavier-Ferreira, J. Bessa, C. Pereira, R.M. Henrique, F. Carneiro, M. Dinis-Ribeiro, R. Marcos-Pinto, M. Lima, B. Lepenies, H. Sokol, J.C. Machado, M. Vilanova, Pinho, glycans as immune checkpoints: removal of branched N-glycans enhances immune recognition preventing cancer progression. Cancer Immunol. Res 8, 1407–1425 (2020)

    Article  CAS  PubMed  Google Scholar 

  51. M.M.A. Coura, E.A. Barbosa, G.D. Brand, C. Bloch, J.B. de Sousa, Identification of differential N-Glycan compositions in the serum and tissue of colon cancer patients by mass spectrometry. Biology (Basel) 10, 343 (2021)

    CAS  PubMed  Google Scholar 

  52. J. Guinney, R. Dienstmann, X. Wang, A. de Reyniès, A. Schlicker, C. Soneson, L. Marisa, P. Roepman, G. Nyamundanda, P. Angelino, B.M. Bot, J.S. Morris, I.M. Simon, S. Gerster, E. Fessler, F. De Sousa, E. Melo, E. Missiaglia, H. Ramay, D. Barras, K. Homicsko, D. Maru, G.C. Manyam, B. Broom, V. Boige, B. Perez-Villamil, T. Laderas, R. Salazar, J.W. Gray, D. Hanahan, J. Tabernero, R. Bernards, S.H. Friend, P. Laurent-Puig, J.P. Medema, A. Sadanandam, L. Wessels, M. Delorenzi, S. Kopetz, L. Vermeulen, S. Tejpar, The consensus molecular subtypes of colorectal cancer. Nat. Med 21, 1350–1356 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. A.G. Pérez, J. Andrade-Da-Costa, W.F. De Souza, M. De Souza Ferreira, M. Boroni, I.M. De Oliveira, C.A. Freire-Neto, P.V. Fernandes, C.A. De Lanna, P.T. Souza-Santos, J.A. Morgado-Díaz, De-Freitas-Junior, N–glycosylation and receptor tyrosine kinase signaling affect claudin–3 levels in colorectal cancer cells. Oncol. Rep 44, 1649–1661 (2020)

    PubMed  PubMed Central  Google Scholar 

  54. K. Murata, E. Miyoshi, M. Kameyama, O. Ishikawa, T. Kabuto, Y. Sasaki, M. Hiratsuka, H. Ohigashi, S. Ishiguro, S. Ito, H. Honda, F. Takemura, N. Taniguchi, S. Imaoka, Expression of N-acetylglucosaminyltransferase V in colorectal cancer correlates with metastasis and poor prognosis. Clin. Cancer Res 6, 1772–1777 (2000)

    CAS  PubMed  Google Scholar 

  55. X. Wang, H. He, H. Zhang, W. Chen, Y. Ji, Z. Tang, Y. Fang, C. Wang, F. Liu, Z. Shen, J. Qin, Y. Zhu, H. Liu, J. Xu, J. Gu, X. Qin, Y. Sun, Clinical and prognostic implications of β1, 6-N-acetylglucosaminyltransferase V in patients with gastric cancer. Cancer Sci 104, 185–193 (2013)

    Article  CAS  PubMed  Google Scholar 

  56. B. Fernandes, U. Sagman, M. Auger, M. Demetrio, J.W. Dennis, Beta 1–6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia. Cancer Res 51, 718–723 (1991)

    CAS  PubMed  Google Scholar 

  57. T. Handerson, R. Camp, M. Harigopal, D. Rimm, J. Pawelek, Beta1,6-branched oligosaccharides are increased in lymph node metastases and predict poor outcome in breast carcinoma. Clin. Cancer Res 11, 2969–2973 (2005)

    Article  CAS  PubMed  Google Scholar 

  58. A. Mehta, P. Norton, H. Liang, M.A. Comunale, M. Wang, L. Rodemich-Betesh, A. Koszycki, K. Noda, E. Miyoshi, T. Block, Increased levels of tetra-antennary N-linked glycan but not core fucosylation are associated with hepatocellular carcinoma tissue. Cancer Epidemiol. Biomarkers Prev 21, 925–933 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. G. Wang, J. Liu, Y. Cai, J. Chen, W. Xie, X. Kong, W. Huang, H. Guo, X. Zhao, Y. Lu, L. Niu, X. Li, H. Zhang, C. Lei, Z. Lei, J. Yin, H. Hu, F. Yu, Y. Nie, L. Xia, K. Wu, Loss of Barx1 promotes hepatocellular carcinoma metastasis through up-regulating MGAT5 and MMP9 expression and indicates poor prognosis. Oncotarget 8, 71867–71880 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  60. H. Liu, Q. Wu, Y. Liu, W. Liu, W. Zhang, D. Pan, J. Xu, Prognostic significance of β1,6-N-acetylglucosaminyltransferase V expression in patients with hepatocellular carcinoma. Jpn J. Clin. Oncol 45, 844–853 (2015)

    Article  PubMed  Google Scholar 

  61. Y. Ishibashi, Y. Tobisawa, S. Hatakeyama, T. Ohashi, M. Tanaka, S. Narita, T. Koie, T. Habuchi, S. Nishimura, C. Ohyama, T. Yoneyama, Serum tri- and tetra-antennary N-glycan is a potential predictive biomarker for castration-resistant prostate cancer. Prostate 74, 1521–1529 (2014)

    Article  CAS  PubMed  Google Scholar 

  62. N. Makrilia, A. Kollias, L. Manolopoulos, K. Syrigos, Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest 27, 1023–1037 (2009)

    Article  CAS  PubMed  Google Scholar 

  63. J.P. Thiery, H. Acloque, R.Y. Huang, M.A. Nieto, Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009)

    Article  CAS  PubMed  Google Scholar 

  64. M. Pucci, N. Malagolini, F. Dall’Olio, Glycobiology of the epithelial to mesenchymal transition. Biomedicines 9, 770 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. S. Holst, M. Wuhrer, Y. Rombouts, Glycosylation characteristics of colorectal cancer. Adv. Cancer Res 126, 203–256 (2015)

    Article  PubMed  Google Scholar 

  66. M. Demetriou, I.R. Nabi, M. Coppolino, S. Dedhar, J.W. Dennis, Reduced contact-inhibition and substratum adhesion in epithelial cells expressing GlcNAc-transferase V. J. Cell. Biol 130, 383–392 (1995)

    Article  CAS  PubMed  Google Scholar 

  67. J.P. Thiery, J.P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell. Biol 7, 131–142 (2006)

    Article  CAS  PubMed  Google Scholar 

  68. S.S. Pinho, R. Seruca, F. Gärtner, Y. Yamaguchi, J. Gu, N. Taniguchi, C.A. Reis, Modulation of E-cadherin function and dysfunction by N-glycosylation. Cell. Mol. Life Sci 68, 1011–1020 (2011)

    Article  CAS  PubMed  Google Scholar 

  69. H. Zhao, Y. Liang, Z. Xu, L. Wang, F. Zhou, Z. Li, J. Jin, Y. Yang, Z. Fang, Y. Hu, L. Zhang, J. Su, X. Zha, N-glycosylation affects the adhesive function of E-Cadherin through modifying the composition of adherens junctions (AJs) in human breast carcinoma cell line MDA-MB-435. J. Cell. Biochem 104, 162–175 (2008)

    Article  CAS  PubMed  Google Scholar 

  70. J.C. de Freitas Junior, Bu.R. Silva, W.F. de Souza, W.M. de Araújo, E.S. Abdelhay, J.A. Morgado-Díaz, Inhibition of N-linked glycosylation by tunicamycin induces e-cadherin-mediated cell-cell adhesion and inhibits cell proliferation in undifferentiated human colon cancer cells. Cancer Chemother. Pharmacol 68, 227–238 (2011)

    Article  PubMed  Google Scholar 

  71. S.S. Pinho, H. Osório, M. Nita-Lazar, J. Gomes, C. Lopes, F. Gärtner, C.A. Reis, Role of E-cadherin N-glycosylation profile in a mammary tumor model. Biochem. Biophys. Res. Commun 379, 1091–1096 (2009)

    Article  CAS  PubMed  Google Scholar 

  72. H.B. Guo, I. Lee, M. Kamar, M. Pierce, N-acetylglucosaminyltransferase V expression levels regulate cadherin-associated homotypic cell-cell adhesion and intracellular signaling pathways. J. Biol. Chem 278, 52412–52424 (2003)

    Article  CAS  PubMed  Google Scholar 

  73. S.S. Pinho, C.A. Reis, J. Paredes, A.M. Magalhães, A.C. Ferreira, J. Figueiredo, W. Xiaogang, F. Carneiro, F. Gärtner, R. Seruca, The role of N-acetylglucosaminyltransferase III and V in the post-transcriptional modifications of E-cadherin. Hum. Mol. Genet 18, 2599–2608 (2009)

    Article  CAS  PubMed  Google Scholar 

  74. R. Akama, Y. Sato, Y. Kariya, T. Isaji, T. Fukuda, L. Lu, N. Taniguchi, M. Ozawa, J. Gu, N-acetylglucosaminyltransferase III expression is regulated by cell-cell adhesion via the e-cadherin-catenin-actin complex. Proteomics 8, 3221–3228 (2008)

    Article  CAS  PubMed  Google Scholar 

  75. J. Iijima, Y. Zhao, T. Isaji, A. Kameyama, S. Nakaya, X. Wang, H. Ihara, X. Cheng, T. Nakagawa, E. Miyoshi, A. Kondo, H. Narimatsu, N. Taniguchi, J. Gu, Cell-cell interaction-dependent regulation of N-acetylglucosaminyltransferase III and the bisected N-glycans in GE11 epithelial cells. Involvement of e-cadherin-mediated cell adhesion. J. Biol. Chem 281, 13038–13046 (2006)

    Article  CAS  PubMed  Google Scholar 

  76. S. Carvalho, T.A. Catarino, A.M. Dias, M. Kato, A. Almeida, B. Hessling, J. Figueiredo, F. Gärtner, J.M. Sanches, T. Ruppert, E. Miyoshi, M. Pierce, F. Carneiro, D. Kolarich, R. Seruca, Y. Yamaguchi, N. Taniguchi, C.A. Reis, S.S. Pinho, Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer. Oncogene 35, 1619–1631 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  77. J.C. de-Freitas-Junior, S. Carvalho, A.M. Dias, P. Oliveira, J. Cabral, R. Seruca, C. Oliveira, J.A. Morgado-Díaz, C.A. Reis, S.S. Pinho, Insulin/IGF-I signaling pathways enhances tumor cell invasion through bisecting GlcNAc N-glycans modulation. An interplay with E-cadherin. PLoS One 8, e81579 (2013)

  78. S. Li, C. Mo, Q. Peng, X. Kang, C. Sun, K. Jiang, L. Huang, Y. Lu, J. Sui, X. Qin, Y. Liu, Cell surface glycan alterations in epithelial mesenchymal transition process of Huh7 hepatocellular carcinoma cell. PLoS One 8, e71273 (2013)

  79. G.J. Khan, Y. Gao, M. Gu, L. Wang, S. Khan, F. Naeem, H. Semukunzi, D. Roy, S. Yuan, L. Sun, TGF-β1 causes EMT by regulating N-Acetyl glucosaminyl transferases via downregulation of non muscle myosin II-A through JNK/P38/PI3K pathway in lung cancer. Curr. Cancer Drug Targets 18, 209–219 (2018)

    Article  CAS  PubMed  Google Scholar 

  80. N. Li, H. Xu, K. Fan, X. Liu, J. Qi, C. Zhao, P. Yin, L. Wang, Z. Li, X. Zha, Altered β1,6-GlcNAc branched N-glycans impair TGF-β-mediated epithelial-to-mesenchymal transition through smad signalling pathway in human lung cancer. J. Cell. Mol. Med 18, 1975–1991 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. E.A. Partridge, C. Le Roy, G.M. Di Guglielmo, J. Pawling, P. Cheung, M. Granovsky, I.R. Nabi, J.L. Wrana, J.W. Dennis, Regulation of cytokine receptors by golgi N-glycan processing and endocytosis. Science 306, 120–124 (2004)

    Article  CAS  PubMed  Google Scholar 

  82. J. Hirabayashi, T. Hashidate, Y. Arata, N. Nishi, T. Nakamura, M. Hirashima, T. Urashima, T. Oka, M. Futai, W.E. Muller, F. Yagi, K. Kasai, Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim. Biophys. Acta 1572, 232–254 (2002)

    Article  CAS  PubMed  Google Scholar 

  83. C.S. Priglinger, J. Obermann, C.M. Szober, J. Merl-Pham, U. Ohmayer, J. Behler, F. Gruhn, T.C. Kreutzer, C. Wertheimer, A. Geerlof, S.G. Priglinger, S.M. Hauck, Epithelial-to-mesenchymal transition of RPE cells in vitro confers increased β1,6-N-Glycosylation and increased susceptibility to Galectin-3 binding. PLoS One 11, e0146887 (2016)

  84. P. Cheung, J.W. Dennis, Mgat5 and Pten interact to regulate cell growth and polarity. Glycobiology 17, 767–773 (2007)

    Article  CAS  PubMed  Google Scholar 

  85. H. Guo, T. Nagy, M. Pierce, Post-translational glycoprotein modifications regulate colon cancer stem cells and colon adenoma progression in apc(min/+) mice through altered wnt receptor signaling. J. Biol. Chem 289, 31534–31549 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. M. Granovsky, J. Fata, J. Pawling, W.J. Muller, R. Khokha, J.W. Dennis, Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat. Med 6, 306–312 (2000)

    Article  CAS  PubMed  Google Scholar 

  87. H.B. Guo, H. Johnson, M. Randolph, T. Nagy, R. Blalock, M. Pierce, Specific posttranslational modification regulates early events in mammary carcinoma formation. Proc. Natl. Acad. Sci. U.S.A. 107, 21116–21121 (2010)

  88. J. Cui, W. Huang, B. Wu, J. Jin, L. Jing, W.P. Shi, Z.Y. Liu, L. Yuan, D. Luo, L. Li, Z.N. Chen, J.L. Jiang, N-glycosylation by N-acetylglucosaminyltransferase V enhances the interaction of CD147/basigin with integrin β1 and promotes HCC metastasis. J. Pathol 245, 41–52 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. S. Ihara, E. Miyoshi, J.H. Ko, K. Murata, S. Nakahara, K. Honke, R.B. Dickson, C.Y. Lin, N. Taniguchi, Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding beta 1–6 GlcNAc branching. J. Biol. Chem 277, 16960–16967 (2002)

    Article  CAS  PubMed  Google Scholar 

  90. Y.S. Kim, Y.H. Ahn, K.J. Song, J.G. Kang, J.H. Lee, S.K. Jeon, H.C. Kim, J.S. Yoo, J.H. Ko, Overexpression and β-1,6-N-acetylglucosaminylation-initiated aberrant glycosylation of TIMP-1: a “double whammy” strategy in colon cancer progression. J. Biol. Chem 287, 32467–32478 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. J.H. Lee, J.G. Kang, K.J. Song, S.K. Jeon, S. Oh, Y.S. Kim, J.H. Ko, N-Acetylglucosaminyltransferase V triggers overexpression of MT1-MMP and reinforces the invasive/metastatic potential of cancer cells. Biochem. Biophys. Res. Commun 431, 658–663 (2013)

    Article  CAS  PubMed  Google Scholar 

  92. K.J. Song, S.K. Jeon, S.B. Moon, J.S. Park, J.S. Kim, J. Kim, S. Kim, H.J. An, J.H. Ko, Y.S. Kim, Lectin from Sambucus sieboldiana abrogates the anoikis resistance of colon cancer cells conferred by N-acetylglucosaminyltransferase V during hematogenous metastasis. Oncotarget 8, 42238–42251 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  93. J. Liu, H. Liu, W. Zhang, Q. Wu, W. Liu, Y. Liu, D. Pan, J. Xu, J. Gu, N-acetylglucosaminyltransferase V confers hepatoma cells with resistance to anoikis through EGFR/PAK1 activation. Glycobiology 23, 1097–1109 (2013)

    Article  PubMed  Google Scholar 

  94. N. Takahashi, E. Yamamoto, K. Ino, E. Miyoshi, T. Nagasaka, H. Kajiyama, K. Shibata, A. Nawa, F. Kikkawa, High expression of N-acetylglucosaminyltransferase V in mucinous tumors of the ovary. Oncol. Rep 22, 1027–1032 (2009)

    CAS  PubMed  Google Scholar 

  95. E. Yamamoto, K. Ino, E. Miyoshi, K. Shibata, N. Takahashi, H. Kajiyama, A. Nawa, S. Nomura, T. Nagasaka, F. Kikkawa, Expression of N-acetylglucosaminyltransferase V in endometrial cancer correlates with poor prognosis. Br. J. Cancer 97, 1538–1544 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. W.F. Chiang, T.M. Cheng, C.C. Chang, S.H. Pan, C.A. Changou, T.H. Chang, K.H. Lee, S.Y. Wu, Y.F. Chen, K.H. Chuang, D.B. Shieh, Y.L. Chen, C.C. Tu, W.L. Tsui, M.H. Wu, Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) promotes EGF receptor signaling of oral squamous cell carcinoma metastasis via the complex N-glycosylation. Oncogene 37, 116–127 (2018)

    Article  CAS  PubMed  Google Scholar 

  97. H. Ishimura, T. Takahashi, H. Nakagawa, S. Nishimura, Y. Arai, Y. Horikawa, T. Habuchi, E. Miyoshi, A. Kyan, S. Hagisawa, C. Ohyama, N-acetylglucosaminyltransferase V and beta1-6 branching N-linked oligosaccharides are associated with good prognosis of patients with bladder cancer. Clin. Cancer Res 12, 2506–2511 (2006)

    Article  CAS  PubMed  Google Scholar 

  98. T. Takahashi, S. Hagisawa, K. Yoshikawa, F. Tezuka, M. Kaku, C. Ohyama, Predictive value of N-acetylglucosaminyltransferase-V for superficial bladder cancer recurrence. J. Urol 175, 90–93 (2006)

    Article  PubMed  Google Scholar 

  99. A. Kyan, N. Kamimura, S. Hagisawa, S. Hatakeyama, T. Koie, T. Yoneyama, Y. Arai, H. Nakagawa, S. Nishimura, E. Miyoshi, Y. Hashimoto, C. Ohyama, Positive expressions of N-acetylglucosaminyltransferase-V (GnT-V) and beta1-6 branching N-linked oligosaccharides in human testicular germ cells diminish during malignant transformation and progression. Int. J. Oncol 32, 129–134 (2008)

    CAS  PubMed  Google Scholar 

  100. L. van der Weyden, V. Harle, G. Turner, V. Offord, V. Iyer, A. Droop, A. Swiatkowska, R. Rabbie, A.D. Campbell, O.J. Sansom, M. Pardo, J.S. Choudhary, I. Ferreira, M. Tullett, M.J. Arends, A.O. Speak, D.J. Adams, CRISPR activation screen in mice identifies novel membrane proteins enhancing pulmonary metastatic colonisation. Commun. Biol 4, 395 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  101. L. van der Weyden, V. Offord, G. Turner, A. Swiatkowska, A.O. Speak, D.J. Adams, Membrane protein regulators of melanoma pulmonary colonisation identified using a CRISPRa screen and spontaneous metastasis assay in mice. G3 (Bethesda) 11, jkab157 (2021)

  102. A.P. Thankamony, K. Saxena, R. Murali, M.K. Jolly, R. Nair, Cancer stem cell plasticity - A deadly deal. Front. Mol. Biosci 7, 79 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. A. Hirata, Y. Hatano, M. Niwa, A. Hara, H. Tomita, Heterogeneity in colorectal cancer stem cells. Cancer Prev. Res. (Phila) 12, 413–420 (2019)

    Article  CAS  PubMed  Google Scholar 

  104. M. Karami Fath, M. Ebrahimi, E. Nourbakhsh, A. Zia Hazara, A. Mirzaei, S. Shafieyari, A. Salehi, M. Hoseinzadeh, Z. Payandeh, G. Barati, PI3K/Akt/mTOR signaling pathway in cancer stem cells. Pathol. Res. Pract 237, 154010 (2022)

    Article  CAS  PubMed  Google Scholar 

  105. X. Zhou, H. Chen, Q. Wang, L. Zhang, J. Zhao, Knockdown of Mgat5 inhibits CD133 + human pulmonary adenocarcinoma cell growth in vitro and in vivo. Clin. Invest. Med 34, E155–E162 (2011)

    Article  CAS  PubMed  Google Scholar 

  106. E. Marhuenda, C. Fabre, C. Zhang, M. Martin-Fernandez, T. Iskratsch, A. Saleh, L. Bauchet, J. Cambedouzou, J.P. Hugnot, H. Duffau, J.W. Dennis, D. Cornu, N. Bakalara, Glioma stem cells invasive phenotype at optimal stiffness is driven by MGAT5 dependent mechanosensing. J. Exp. Clin. Cancer Res 40, 139 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. D. Li, Y. Li, X. Wu, Q. Li, J. Yu, J. Gen, X.L. Zhang, Knockdown of Mgat5 inhibits breast cancer cell growth with activation of CD4 + T cells and macrophages. J. Immunol 180, 3158–3165 (2008)

    Article  CAS  PubMed  Google Scholar 

  108. J. Lu, J. Wu, L. Mao, H. Xu, S. Wang, Revisiting PD-1/PD-L pathway in T and B cell response: beyond immunosuppression. Cytokine Growth Factor Rev 67, 58–65 (2022)

    Article  CAS  PubMed  Google Scholar 

  109. C.W. Li, S.O. Lim, E.M. Chung, Y.S. Kim, A.H. Park, J. Yao, J.H. Cha, W. Xia, L.C. Chan, T. Kim, S.S. Chang, H.H. Lee, C.K. Chou, Y.L. Liu, H.C. Yeh, E.P. Perillo, A.K. Dunn, C.W. Kuo, K.H. Khoo, J.L. Hsu, Y. Wu, J.M. Hsu, H. Yamaguchi, T.H. Huang, A.A. Sahin, G.N. Hortobagyi, S.S. Yoo, M.C. Hung, Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell 33, 187-201.e110 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. A. Vasconcelos-dos-Santos, H.F.B.R. Loponte, N.R. Mantuano, I.A. Oliveira, I.F. de Paula, L.K. Teixeira, J.C.M. de-Freitas-Junior, K.C. Gondim, N. Heise, R. Mohana-Borges, J.A. Morgado-Diaz, W.B. Dias, A.R. Todeschini, Hyperglycemia exacerbates colon cancer malignancy through hexosamine biosynthetic pathway. Oncogenesis 6, e306 (2017)

  111. K.T. Schjoldager, Y. Narimatsu, H.J. Joshi, H. Clausen, Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell. Biol 21, 729–749 (2020)

    Article  CAS  PubMed  Google Scholar 

  112. J. Cai, J. Huang, W. Wang, J. Zeng, P. Wang, Mir-124-3p regulates FGF2-EGFR pathway to overcome pemetrexed resistance in lung adenocarcinoma cells by targeting MGAT5. Cancer Manag. Res 12, 11597–11609 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. G. Greville, E. Llop, C. Huang, J. Creagh-Flynn, S. Pfister, R. O’Flaherty, S.F. Madden, R. Peracaula, P.M. Rudd, A. McCann, R. Saldova, Hypoxia alters epigenetic and N-Glycosylation profiles of ovarian and breast cancer cell lines in-vitro. Front. Oncol 10, 1218 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  114. A. Heard, J.H. Landmann, A.R. Hansen, A. Papadopolou, Y.S. Hsu, M.E. Selli, J.M. Warrington, J. Lattin, J. Chang, H. Ha, M. Haug-Kroeper, B. Doray, S. Gill, M. Ruella, K.E. Hayer, M.D. Weitzman, A.M. Green, R. Fluhrer, N. Singh, Antigen glycosylation regulates efficacy of CAR T cells targeting CD19. Nat. Commun 13, 3367 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. B. Greco, V. Malacarne, F. De Girardi, G.M. Scotti, F. Manfredi, E. Angelino, C. Sirini, B. Camisa, L. Falcone, M.A. Moresco, K. Paolella, M. Di Bono, R. Norata, F. Sanvito, S. Arcangeli, C. Doglioni, F. Ciceri, C. Bonini, A. Graziani, A. Bondanza, Casucci. Disrupting N-glycan expression on tumor cells boosts chimeric antigen receptor T cell efficacy against solid malignancies. Sci. Transl Med 14, eabg3072 (2022)

    Article  CAS  PubMed  Google Scholar 

  116. C. Huang, M. Huang, W. Chen, W. Zhu, H. Meng, L. Guo, T. Wei, J. Zhang, N-acetylglucosaminyltransferase V modulates radiosensitivity and migration of small cell lung cancer through epithelial-mesenchymal transition. FEBS J 282, 4295–4306 (2015)

    Article  CAS  PubMed  Google Scholar 

  117. Z. Hassani, A. Saleh, S. Turpault, S. Khiati, W. Morelle, J. Vignon, J.P. Hugnot, E. Uro-Coste, P. Legrand, M. Delaforge, S. Loiseau, L. Clarion, M. Lecouvey, J.N. Volle, D. Virieux, J.L. Pirat, H. Duffau, N. Bakalara. Phostine PST3.1a targets MGAT5 and inhibits glioblastoma-initiating cell invasiveness and proliferation. Mol. Cancer Res 15, 1376–1387 (2017)

    Article  CAS  PubMed  Google Scholar 

  118. S. Carvalho, T.A. Catarino, A.M. Dias, M. Kato, A. Almeida, B. Hessling, J. Figueiredo, F. Gartner, J.M. Sanches, T. Ruppert, E. Miyoshi, M. Pierce, F. Carneiro, D. Kolarich, R. Seruca, Y. Yamaguchi, N. Taniguchi, C.A. Reis, S.S. Pinho, Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer. Oncogene 35, 1619–1631 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  119. A. Kirwan, M. Utratna, M.E. O’Dwyer, L. Joshi, M. Kilcoyne, Glycosylation-based serum biomarkers for cancer diagnostics and prognostics. Biomed. Res. Int. 2015, 490531 (2015)

  120. F. Diniz, P. Coelho, H.O. Duarte, B. Sarmento, C.A. Reis, J. Gomes, Glycans as targets for drug delivery in cancer. Cancers (Basel) 14, (2022)

  121. J.J. Lyons, J.D. Milner, S.D. Rosenzweig, Glycans instructing immunity: the emerging role of altered glycosylation in clinical immunology. Front. Pediatr 3, 54 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  122. K. Jain, P. Kesharwani, U. Gupta, N.K. Jain, A review of glycosylated carriers for drug delivery. Biomaterials 33, 4166–4186 (2012)

    Article  CAS  PubMed  Google Scholar 

  123. Y. Gao, J. Wang, Y. Zhou, S. Sheng, S.Y. Qian, X. Huo, Evaluation of serum CEA, CA19-9, CA72-4, CA125 and ferritin as diagnostic markers and factors of clinical parameters for colorectal cancer. Sci. Rep 8, 2732 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  124. D.R. Tulsiani, T.M. Harris, O. Touster, Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of golgi mannosidase II. J. Biol. Chem 257, 7936–7939 (1982)

    Article  CAS  PubMed  Google Scholar 

  125. J.Y. Sun, M.Z. Zhu, S.W. Wang, S. Miao, Y.H. Xie, J.B. Wang, Inhibition of the growth of human gastric carcinoma in vivo and in vitro by swainsonine. Phytomedicine 14, 353–359 (2007)

    Article  CAS  PubMed  Google Scholar 

  126. L. Sun, X. Jin, L. Xie, G. Xu, Y. Cui, Z. Chen, Swainsonine represses glioma cell proliferation, migration and invasion by reduction of miR-92a expression. BMC Cancer 19, 247 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  127. P.E. Shaheen, W. Stadler, P. Elson, J. Knox, E. Winquist, R.M. Bukowski, Phase II study of the efficacy and safety of oral GD0039 in patients with locally advanced or metastatic renal cell carcinoma. Invest. New. Drugs 23, 577–581 (2005)

    Article  CAS  PubMed  Google Scholar 

  128. R. Yu, J. Longo, J.E. van Leeuwen, C. Zhang, E. Branchard, M. Elbaz, D.W. Cescon, R.R. Drake, J.W. Dennis, L.Z. Penn, Mevalonate pathway inhibition slows breast cancer metastasis via reduced. Cancer Res 81, 2625–2635 (2021)

    Article  CAS  PubMed  Google Scholar 

  129. A.M. Vibhute, H.N. Tanaka, S.K. Mishra, R.F. Osuka, M. Nagae, C. Yonekawa, H. Korekane, R.J. Doerksen, H. Ando, Y. Kizuka, Structure-based design of UDP-GlcNAc analogs as candidate GnT-V inhibitors. Biochim. Biophys. Acta Gen. Subj 1866, 130118 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. M. Nagae, Y. Kizuka, E. Mihara, Y. Kitago, S. Hanashima, Y. Ito, J. Takagi, N. Taniguchi, Y. Yamaguchi, Structure and mechanism of cancer-associated N-acetylglucosaminyltransferase-V. Nat. Commun 9, 3380 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  131. H. Huang, W. Chen, Q. Liu, T. Wei, W. Zhu, H. Meng, L. Guo, J. Zhang, Inhibition of N-acetylglucosaminyltransferase V enhances sensitivity of radiotherapy in human prostate cancer. Biochem. Biophys. Res. Commun 451, 345–351 (2014)

    Article  CAS  PubMed  Google Scholar 

  132. E. Zhuo, J. He, T. Wei, W. Zhu, H. Meng, Y. Li, L. Guo, J. Zhang, Down-regulation of GnT-V enhances nasopharyngeal carcinoma cell CNE-2 radiosensitivity in vitro and in vivo. Biochem. Biophys. Res. Commun 424, 554–562 (2012)

    Article  CAS  PubMed  Google Scholar 

  133. Y. Zhang, J. He, The development of targeted therapy in small cell lung cancer. J. Thorac. Dis 5, 538–548 (2013)

    PubMed  PubMed Central  Google Scholar 

  134. Y.T. Lee, Y.J. Tan, C.E. Oon, Molecular targeted therapy: treating cancer with specificity. Eur. J. Pharmacol 834, 188–196 (2018)

    Article  CAS  PubMed  Google Scholar 

  135. H. Kaur, Characterization of glycosylation in monoclonal antibodies and its importance in therapeutic antibody development. Crit. Rev. Biotechnol 41, 300–315 (2021)

    Article  CAS  PubMed  Google Scholar 

  136. R.L. Shields, J. Lai, R. Keck, L.Y. O’Connell, K. Hong, Y.G. Meng, S.H. Weikert, L.G. Presta, Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem 277, 26733–26740 (2002)

    Article  CAS  PubMed  Google Scholar 

  137. C. Ferrara, F. Stuart, P. Sondermann, P. Brünker, P. Umaña, The carbohydrate at FcgammaRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J. Biol. Chem 281, 5032–5036 (2006)

    Article  CAS  PubMed  Google Scholar 

  138. D.O. Croci, M.F. Zacarías Fluck, M.J. Rico, P. Matar, G.A. Rabinovich, O.G. Scharovsky, Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment. Cancer Immunol. Immunother 56, 1687–1700 (2007)

    Article  PubMed  Google Scholar 

  139. R.D. Schreiber, L.J. Old, M.J. Smyth, Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011)

    Article  CAS  PubMed  Google Scholar 

  140. L. Ai, J. Chen, H. Yan, Q. He, P. Luo, Z. Xu, X. Yang, Research status and outlook of PD-1/PD-L1 inhibitors for cancer therapy. Drug Des. Devel Ther 14, 3625–3649 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. M. Nishino, N.H. Ramaiya, H. Hatabu, F.S. Hodi, Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat. Rev. Clin. Oncol 14, 655–668 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. C.W. Li, S.O. Lim, W. Xia, H.H. Lee, L.C. Chan, C.W. Kuo, K.H. Khoo, S.S. Chang, J.H. Cha, T. Kim, J.L. Hsu, Y. Wu, J.M. Hsu, H. Yamaguchi, Q. Ding, Y. Wang, J. Yao, C.C. Lee, H.J. Wu, A.A. Sahin, J.P. Allison, D. Yu, G.N. Hortobagyi, M.C. Hung, Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat. Commun 7, 12632 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. H.H. Lee, Y.N. Wang, W. Xia, C.H. Chen, K.M. Rau, L. Ye, Y. Wei, C.K. Chou, S.C. Wang, M. Yan, C.Y. Tu, T.C. Hsia, S.F. Chiang, K.S.C. Chao, I.I. Wistuba, J.L. Hsu, G.N. Hortobagyi, M.C. Hung, Removal of N-Linked glycosylation enhances PD-L1 detection and predicts Anti-PD-1/PD-L1 therapeutic efficacy. Cancer Cell 36, 168-178.e164 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. S. Shi, S. Gu, T. Han, W. Zhang, L. Huang, Z. Li, D. Pan, J. Fu, J. Ge, M. Brown, P. Zhang, P. Jiang, K.W. Wucherpfennig, X.S. Liu, Inhibition of MAN2A1 enhances the immune response to anti-PD-L1 in human tumors. Clin Cancer Res 26, 5990–6002 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. C.J. Turtle, L.A. Hanafi, C. Berger, M. Hudecek, B. Pender, E. Robinson, R. Hawkins, C. Chaney, S. Cherian, X. Chen, L. Soma, B. Wood, D. Li, S. Heimfeld, S.R. Riddell, D.G. Maloney, Immunotherapy of non-hodgkin’s lymphoma with a defined ratio of CD8 + and CD4 + CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl Med 8, 355ra116 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  146. S.L. Maude, T.W. Laetsch, J. Buechner, S. Rives, M. Boyer, H. Bittencourt, P. Bader, M.R. Verneris, H.E. Stefanski, G.D. Myers, M. Qayed, B. De Moerloose, H. Hiramatsu, K. Schlis, K.L. Davis, P.L. Martin, E.R. Nemecek, G.A. Yanik, C. Peters, A. Baruchel, N. Boissel, F. Mechinaud, A. Balduzzi, J. Krueger, C.H. June, B.L. Levine, P. Wood, T. Taran, M. Leung, K.T. Mueller, Y. Zhang, K. Sen, D. Lebwohl, M.A. Pulsipher, S.A. Grupp, Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl. J. Med 378, 439–448 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. R.G. Majzner, C.L. Mackall, Clinical lessons learned from the first leg of the CAR T cell journey. Nat. Med 25, 1341–1355 (2019)

    Article  CAS  PubMed  Google Scholar 

  148. F. Marofi, R. Motavalli, V.A. Safonov, L. Thangavelu, A.V. Yumashev, M. Alexander, N. Shomali, M.S. Chartrand, Y. Pathak, M. Jarahian, S. Izadi, A. Hassanzadeh, N. Shirafkan, S. Tahmasebi, F.M. Khiavi, CAR T cells in solid tumors: challenges and opportunities. Stem Cell. Res. Ther 12, 81 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. X. Shi, D. Zhang, F. Li, Z. Zhang, S. Wang, Y. Xuan, Y. Ping, Y. Zhang, Targeting glycosylation of PD-1 to enhance CAR-T cell cytotoxicity. J. Hematol. Oncol 12, 127 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Figs. 1, 2, 3, and 6 were created with BioRender.com. The body map and graph of Fig. 4, as well as the survival curves of Fig. 5, were generated with GEPIA2 (gepia2.cancer-pku.cn). We are grateful to all members of the Cellular and Molecular Oncobiology Program, particularly Annie Cristhine Moraes Sousa‑Squiavinato, for assistance and relevant suggestions

Funding

This work was funded by Ministério da Saúde, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Contributions

Study design: MdSF, EEF, and JCMdFJ. Literature search and data collection: MdSF, EEF, and JCMdFJ. Data analysis: MdSF and JCMdFJ. Manuscript drafting: MdSF, EEF, and JCMdFJ. Manuscript editing and revision: MdSF and JCMdFJ. Supervision: JCMdFJ.

Corresponding author

Correspondence to Julio Cesar Madureira de-Freitas-Junior.

Ethics declarations

Ethical approval and consent to participate

Not applicable. 

Human ethics

Not applicable. 

Consent for publication

Not applicable.

Competing interests

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de-Souza-Ferreira, M., Ferreira, É.E. & de-Freitas-Junior, J.C.M. Aberrant N-glycosylation in cancer: MGAT5 and β1,6-GlcNAc branched N-glycans as critical regulators of tumor development and progression. Cell Oncol. 46, 481–501 (2023). https://doi.org/10.1007/s13402-023-00770-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00770-4

Keywords

Navigation