Skip to main content

Advertisement

Log in

Targeting glucose transport and the NAD pathway in tumor cells with STF-31: a re-evaluation

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Targeting glucose metabolism is a promising way to interfere with tumor cell proliferation and survival. However, controversy exists about the specificity of some glucose metabolism targeting anticancer drugs. Especially the potency of STF-31 has been debated. Here, we aimed to assess the impact of the glucose transporter (GLUT) inhibitors fasentin and WZB117, and the nicotinamide phosphoribosyltransferase (NAMPT) inhibitors GMX1778 and STF-31 on tumor cell proliferation and survival, as well as on glucose uptake.

Methods

Tumor-derived A172 (glioblastoma), BHY (oral squamous cell carcinoma), HeLa (cervix adenocarcinoma), HN (head neck cancer), HT-29 (colon carcinoma) and MG-63 (osteosarcoma) cells were treated with fasentin, WZB117, GMX1778 and STF-31. Proliferation rates and cell viabilities were assessed using XTT, crystal violet and LDH assays. mRNA and protein expression of GLUT1 and NAPRT were assessed using qPCR and Western blotting, respectively. The effects of inhibiting compounds on glucose uptake were measured using [18F]-fluoro-deoxyglucose uptake experiments.

Results

Stimulation of tumor-derived cells with the different inhibitors tested revealed a complex pattern, whereby proliferation inhibiting and survival reducing concentrations varied in [18F]-fluoro-deoxyglucose uptake experiments more than one order of magnitude among the different cells tested. We found that the effects of GMX1778 and STF-31 could be partially abolished by (i) nicotinic acid (NA) only in nicotinic acid phosphoribosyltransferase (NAPRT) expressing cells and (ii) nicotinamide mononucleotide (NMN) in all cells tested, supporting the classification of these compounds as NAMPT inhibitors. In short-time [18F]-fluoro-deoxyglucose uptake experiments the application of WZB-117 was found to lead to an almost complete uptake inhibition in all cells tested, whereas the effect of fasentin was found to be cell type dependent with a maximum value of ~35% in A172, BHY, HeLa and HT-29 cells. We also found that STF-31 inhibited glucose uptake in all cells tested in a range of 25–50%. These data support the classification of STF-31 as a GLUT inhibitor.

Conclusions

Our data reveal a dual mode of action of STF-31, serving either as a NAMPT or as a GLUT inhibitor, whereby the latter seems to be apparent only at higher STF-31 concentrations. The molecular basis of such a dual function and its appearance in compounds previously designated as NAMPT-specific inhibitors requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Glycolysis and mammalian NAD + metabolic pathways.
Fig. 2: Metabolic perturbation by GLUT inhibitors in tumor cells after short-time culture.
Fig. 3: Rescue effects in NAMPT or GLUT inhibitor treated tumor cells after long-time culture in the absence or presence of NA or NMN.
Fig. 4: Glucose uptake inhibition in NAMPT or GLUT inhibitor treated tumor cells.

Similar content being viewed by others

References

  1. N. Mjiya, A. Caro-Maldonado, S. Ramírez-Peinado, C. Muñoz-Pinedo, Sugar-free approaches to cancer cell killing. Oncogene 30, 253–264 (2011)

    Article  CAS  Google Scholar 

  2. M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. C. Granchi, D. Fancelli, F. Minutolo, An update on therapeutic opportunities offered by cancer glycolytic metabolism. Bioorg Med Chem Lett 24, 4915–4925 (2014)

    Article  CAS  PubMed  Google Scholar 

  4. O. Warburg, On the origin of cancer cells. Science 123, 309–314 (1956)

    Article  CAS  PubMed  Google Scholar 

  5. R. Moreno-Sánchez, S. Rodríguez-Enríquez, A. Marín-Hernández, E. Saavedra, Energy metabolism in tumor cells. FEBS J 274, 1393–1418 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. P. Danhier, P. Bański, V.L. Payen, D. Grasso, L. Ippolito, P. Sonveaux, P.E. Porporato, Cancer metabolism in space and time: Beyond the Warburg effect. Biochim Biophys Acta 1858, 556–572 (2017)

    Article  CAS  Google Scholar 

  7. P.E. Porporato, S. Dhup, R.K. Dadhich, T. Copetti, P. Sonveaux, Anticancer targets in the glycolytic metabolism of tumors: A comprehensive review. Front Pharmacol 2, 49 (2011)

  8. F.Q. Zhao, A.F. Keating, Functional properties and genomics of glucose transporters. Curr Genomics 8, 113–128 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. P.O. Hassa, S.S. Haenni, M. Elser, M.O. Hottiger, Nuclear ADP-ribosylation reactions in mammalian cells: Where are we today and where are we going? Microbiol Mol Biol Rev 70, 789–829 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. G. Magni, A. Amici, M. Emanuelli, N. Raffaelli, S. Ruggieri, Enzymology of NAD+ synthesis. Adv Enzymol Relat Areas Mol Biol 73, 135–182 (1999)

    PubMed  CAS  Google Scholar 

  11. A. Roulston, G.C. Shore, New strategies to maximize therapeutic opportunities for NAMPT inhibitors in oncology. Mol Cell Oncol 3, e1052180 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D.A. Chan, P.D. Sutphin, P. Nguyen, S. Turcotte, E.W. Lai, A. Banh, G.E. Reynolds, J.T. Chi, J. Wu, D.E. Solow-Cordero, M. Bonnet, J.U. Flanagan, D.M. Bouley, E.E. Graves, W.A. Denny, M.P. Hay, A.J. Giaccia, Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci Transl Med 3, 94ra70 (2011)

    PubMed  PubMed Central  CAS  Google Scholar 

  13. D.J. Adams, D. Ito, M.G. Rees, B. Seashore-Ludlow, X. Puyang, A.H. Ramos, J.H: Cheah, P.A. Clemons, M. Warmuth, P. Zhu, A.F. Shamji, S.L. Schreiber, NAMPT is the cellular target of STF-31-like small-molecule probes. ACS Chem Biol 9, 2247–2254 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. E.M. Kropp, B.J. Oleson, K.A. Broniowska, S. Bhattacharya, A.C. Chadwick, A.R. Diers, Q. Hu, D.E. Sahoo, N. Hogg, K.R. Boheler, J.A. Corbett, R.L. Gundry, Inhibition of an NAD+ salvage pathway provides efficient and selective toxicity to human pluripotent stem cells. Stem Cells Transl Med 4, 483–493 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. K.R. Boheler, S. Bhattacharya, E.M. Kropp, S. Chuppa, D.R. Riordon, D. Bausch-Fluck, P.W. Burridge, J.C. Wu, R.P. Wersto, G.C. Chan, S. Rao, B. Wollscheid, R.L. Gundry, A human pluripotent stem cell surface N-glycoproteome resource reveals markers, extracellular epitopes, and drug targets. Stem Cell Rep 3, 185–203 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. T. Matsumoto, S. Jimi, K. Migita, Y. Takamatsu, S. Hara, Inhibition of glucose transporter 1 induces apoptosis and sensitizes multiple myeloma cells to conventional chemotherapeutic agents. Leuk Res 41, 103–110 (2016)

    Article  CAS  PubMed  Google Scholar 

  17. C. Xintaropoulou, C. Ward, A. Wise, H. Marston, A. Turnbull, S.P. Langdon, A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models. Oncotarget 6, 25677–25695 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  18. D. Kraus, J. Reckenbeil, M. Wenghoefer, H. Stark, M. Frentzen, J.P. Allam, N. Novak, S. Frede, W. Götz, R. Probstmeier, R. Meyer, J. Winter, Ghrelin promotes oral tumor cell proliferation by modifying GLUT1 expression. Cell Mol Life Sci 73, 1287–1299 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. T. Murmann, C. Carrillo-García, N. Veit, C. Courts, A. Glassmann, V. Janzen, B. Madea, M. Reinartz, A. Harzen, M. Nowak, S. Perner, J. Winter, R. Probstmeier, Staurosporine and extracellular matrix proteins mediate the conversion of small cell lung carcinoma cells into a neuron-like phenotype. PLoS One 9, e86910 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M.V. Berridge, P.M. Herst, A.S. Tan, Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnol Annu Rev 11, 127–152 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. M. Watson, A. Roulston, L. Bélec, X. Billot, R. Marcellus, D. Bédar, C. Bernier, S. Branchaud, H. Chan, K. Dairi, K. Gilbert, D. Goulet, M.O. Gratton, H. Isakau, A. Jang, A. Khadir, E. Koch, M. Lavoie, M. Lawless, M. Nguyen, D. Paquette, E. Turcotte, A. Berger, M. Mitchell, G.C. Shore, P. Beauparlant, The small molecule GMX1778 is a potent inhibitor of NAD+ biosynthesis: Strategy for enhanced therapy in nicotinic acid phosphoribosyltransferase 1-deficient tumors. Mol Cell Biol 29, 5872–5888 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Y. Xiao, K. Elkins, J.K. Durieux, L. Lee, J. Oeh, L.X. Yang, X. Liang, C. DelNagro, J. Tremayne, M. Kwong, B.M. Liederer, P.K. Jackson, L.D. Belmont, D. Sampath, T. O'Brien, dependence of tumor cell lines and patient-derived tumors on the NAD salvage pathway renders them sensitive to NAMPT inhibition with GNE-618. Neoplasia 15, 1151–1160 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. F. Sahm, I. Oezen, C.A. Opitz, B. Radlwimmer, A. von Deimling, T. Ahrendt, S. Adams, H.B. Bode, G.J. Guillemin, W. Wick, M. Platten, The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress. Cancer Res 73, 3225–3234 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. T. O'Brien, J. Oeh, Y. Xiao, X. Liang, A. Vanderbilt, A. Qin, L. Yang, L.B. Lee, J. Ly, E. Cosino, J.A. LaCap, A. Ogasawara, S. Williams, M. Nannini, B.M. Liederer, P. Jackson, P.S. Dragovich, D. Sampath, Supplementation of nicotinic acid with NAMPT inhibitors results in loss of in vivo efficacy in NAPRT1-deficient tumor models. Neoplasia 15, 1314–1329 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D.J. Stewart, G.P. Raaphorst, J. Yau, A.R. Beaubien, Active vs. passive resistance, dose-response relationships, high dose chemotherapy, and resistance modulation: A hypothesis. Investig New Drugs 14, 115–130 (1996)

    CAS  Google Scholar 

  26. F.P. Guengerich, A.W. Munro, Unusual cytochrome P450 enzymes and reactions. J Biol Chem 288, 17065–17073 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. J.R. Cashma, J. Zhang, Human flavin-containing monooxygenases. Annu Rev Pharmacol Toxicol 46, 65–100 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Probstmeier.

Ethics declarations

Conflict of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraus, D., Reckenbeil, J., Veit, N. et al. Targeting glucose transport and the NAD pathway in tumor cells with STF-31: a re-evaluation. Cell Oncol. 41, 485–494 (2018). https://doi.org/10.1007/s13402-018-0385-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-018-0385-5

Keywords

Navigation