Skip to main content

Advertisement

Log in

microRNA-145 modulates epithelial-mesenchymal transition and suppresses proliferation, migration and invasion by targeting SIP1 in human cervical cancer cells

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Previously, it has been reported that microRNA-145 (miR-145) is lowly expressed in human cervical cancers and that its putative tumour suppressive role may be attributed to epithelial-mesenchymal transition (EMT) regulation. Here, we aimed to assess whether miR-145 may affect EMT-associated markers/genes and suppress cervical cancer growth and motility, and to provide a mechanistic basis for these phenomena.

Methods

The identification of the SMAD-interacting protein 1 (SIP1) mRNA as putative miR-145 target was investigated using a 3’ untranslated region (3’UTR) luciferase assay and Western blotting, respectively. The functional effects of exogenous miR-145 expression, miR-145 suppression or siRNA-mediated SIP1 expression down-regulation in cervical cancer-derived C33A and SiHa cells were analysed using Western blotting, BrdU incorporation (proliferation), transwell migration and invasion assays. In addition, the expression levels of miR-145 and SIP1 were determined in primary human cervical cancer and non-cancer tissue samples using qRT-PCR.

Results

We found that miR-145 binds to the wild-type 3’UTR of SIP1, but not to its mutant counterpart, and that, through this binding, miR-145 can effectively down-regulate SIP1 expression. In addition, we found that exogenous miR-145 expression or siRNA-mediated down-regulation of SIP1 expression attenuates the proliferation, migration and invasion of C33A and SiHa cells and alters the expression of the EMT-associated markers CDH1, VIM and SNAI1, whereas inhibition of endogenous miR-145 expression elicited the opposite effects. The expression of miR-145 in cervical cancer tissue samples was found to be low, while that of SIP1 was found to be high compared to non-cancerous cervical tissues. An inverse expression correlation between the two was substantiated through the anlaysis of data deposited in the TCGA database.

Conclusion

Our data indicate that low miR-145 expression levels in conjunction with elevated SIP1 expression levels may contribute to cervical cancer development. MiR-145-mediated regulation of SIP1 provides a novel mechanistic basis for its tumour suppressive mode of action in human cervical cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Ferlay, I.I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D.D. Forman, F. Bray, Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2014)

    Article  PubMed  Google Scholar 

  2. C.D. Capo-Chichi, B. Aguida, N.W. Chabi, Q.K. Cai, G. Offrin, V.K. Agossou, A. Sanni, X.-X. Xu, Lamin A/C deficiency is an independent risk factor for cervical cancer. Cell. Oncol. 39, 59–68 (2016)

    Article  CAS  Google Scholar 

  3. S.B. Prasad, S.S. Yadav, M. Das, A. Modi, S. Kumari, L.K. Pandey, S. Singh, S. Pradhan, G. Narayan, PI3K/AKT pathway-mediated regulation of p27Kip1 is associated with cell cycle arrest and apoptosis in cervical cancer. Cell. Oncol. 38, 215–225 (2015)

    Article  CAS  Google Scholar 

  4. W.-O. Lui, N. Pourmand, B.K. Patterson, A. Fire, Patterns of known and novel small RNAs in human cervical cancer. Cancer Res. 67, 6031–6043 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. M. Schiffman, N. Wentzensen, Human papillomavirus infection and the multistage carcinogenesis of cervical cancer. Cancer Epidemiol. Biomarkers Prev. 22, 553–560 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  6. J.M.M. Walboomers, M.V. Jacobs, M.M. Manos, F.X. Bosch, J.A. Kummer, K.V. Shah, P.J.F. Snijders, J. Peto, C.J.L.M. Meijer, N. Muoz, Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189, 12–19 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. X. Wang, S. Tang, S.-Y. Le, R. Lu, J.S. Rader, C. Meyers, Z.-M. Zheng, Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS ONE 3, e2557 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Z.-M. Zheng, X. Wang, Regulation of cellular miRNA expression by human papillomaviruses. Biochim. Biophys. Acta 1809, 668–677 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. V. Ambros, MicroRNA pathways in flies and worms. Cell 113, 673–676 (2003)

    Article  CAS  PubMed  Google Scholar 

  10. D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. S. Sassen, E.A. Miska, C. Caldas, MicroRNA: implications for cancer. Virchows Arch. 452, 1–10 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. A. Esquela-Kerscher, F.J. Slack, Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. S. Volinia, G.A. Calin, C.-G. Liu, S. Ambs, A. Cimmino, F. Petrocca, R. Visone, M. Iorio, C. Roldo, M. Ferracin, R.L. Prueitt, N. Yanaihara, G. Lanza, A. Scarpa, A. Vecchione, M. Negrini, C.C. Harris, C.M. Croce, A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. U. S. A. 103, 2257–2261 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. Pichler, G.A. Calin, MicroRNAs in cancer: from developmental genes in worms to their clinical application in patients. Br. J. Cancer 113, 569–573 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. X. Wang, H.-K. Wang, J.P. McCoy, N.S. Banerjee, J.S. Rader, T.R. Broker, C. Meyers, L.T. Chow, Z.-M. Zheng, Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA 15, 637–647 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Melar-New, L.A. Laimins, Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J. Virol. 84, 5212–5521 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. T. Hou, J. Ou, X. Zhao, X. Huang, Y. Huang, Y. Zhang, MicroRNA-196a promotes cervical cancer proliferation through the regulation of FOXO1 and p27Kip1. Br. J. Cancer 110, 1260–1268 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. T. Tang, H.K. Wong, W. Gu, M.Y. Yu, K.-F.F. To, C.C. Wang, Y.F. Wong, T.H. Cheung, T.K.H. Chung, K.W. Choy, MicroRNA-182 plays an onco-miRNA role in cervical cancer. Gynecol. Oncol. 129, 199–208 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. M. Shi, L. Du, D. Liu, L. Qian, M. Hu, M. Yu, Z. Yang, M. Zhao, C. Chen, L. Guo, L. Wang, L. Song, Y. Ma, N. Guo, Glucocorticoid regulation of a novel HPV-E6-p53-miR-145 pathway modulates invasion and therapy resistance of cervical cancer cells. J. Pathol. 228, 148–157 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. G. Barriere, P. Fici, G. Gallerani, F. Fabbri, M. Rigaud, Epithelial mesenchymal transition: a double-edged sword. Clin. Transl. Med. 4, 14 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  21. M.-Y. Lee, C.-Y. Chou, M.-J. Tang, M.-R. Shen, Epithelial-mesenchymal transition in cervical cancer: correlation with tumor progression, epidermal growth factor receptor overexpression, and snail up-regulation. Clin. Cancer Res. 14, 4743–4750 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. K. Shibata, H. Kajiyama, K. Ino, M. Terauchi, E. Yamamoto, A. Nawa, S. Nomura, F. Kikkawa, Twist expression in patients with cervical cancer is associated with poor disease outcome. Ann. Oncol. 19, 81–85 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. J. Comijn, G. Berx, P. Vermassen, K. Verschueren, L. van Grunsven, E. Bruyneel, M. Mareel, D. Huylebroeck, F. van Roy, The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol. Cell 7, 1267–1278 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. C. Vandewalle, J. Comijn, B. De Craene, P. Vermassen, E. Bruyneel, H. Andersen, E. Tulchinsky, F. Van Roy, G. Berx, SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res. 33, 6566–6578 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M. Korpal, E.S. Lee, G. Hu, Y. Kang, The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910–14914 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Y. Hou, J. Zhen, X. Xu, K. Zhen, B. Zhu, R. Pan, C. Zhao, miR‑215 functions as a tumor suppressor and directly targets ZEB2 in human non‑small cell lung cancer. Oncol. Lett. 10, 1985–1992 (2015)

    PubMed  PubMed Central  Google Scholar 

  27. D.-K. Sun, J.-M. Wang, P. Zhang, Y.-Q. Wang, MicroRNA-138 regulates metastatic potential of bladder cancer through ZEB2. Cell. Physiol. Biochem. 37, 2366–2374 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. K. Saito, T. Oku, N. Ata, H. Miyashiro, M. Hattori, I. Saiki, A modified and convenient method for assessing tumor cell invasion and migration and its application to screening for inhibitors. Biol. Pharm. Bull. 20, 345–348 (1997)

    Article  CAS  PubMed  Google Scholar 

  29. A.V. Das, R.M. Pillai, Implications of miR cluster 143/145 as universal anti-oncomiRs and their dysregulation during tumorigenesis. Cancer Cell Int. 15, 92 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  30. M. Garg, Epithelial-mesenchymal transition - activating transcription factors - multifunctional regulators in cancer. World J. Stem Cells 5, 188–195 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  31. V. Taucher, H. Mangge, J. Haybaeck, Non-coding RNAs in pancreatic cancer: challenges and opportunities for clinical application. Cell. Oncol. 39, 295–318 (2016)

    Article  CAS  Google Scholar 

  32. A. Ferraro, Altered primary chromatin structures and their implications in cancer development. Cell. Oncol. 39, 195–210 (2016)

    Article  Google Scholar 

  33. M. Vitiello, A. Tuccoli, L. Poliseno, Long non-coding RNAs in cancer: implications for personalized therapy. Cell. Oncol. 38, 17–28 (2015)

    Article  CAS  Google Scholar 

  34. B.D. Adams, A.L. Kasinski, F.J. Slack, Aberrant regulation and function of microRNAs in cancer. Curr. Biol. 24, R762–R776 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. L. Huang, J.-X. Lin, Y.-H. Yu, M.-Y. Zhang, H.-Y. Wang, M. Zheng, Downregulation of six microRNAs is associated with advanced stage, lymph node metastasis and poor prognosis in small cell carcinoma of the cervix. PLoS ONE 7, e33762 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. D. Geng, X. Song, F. Ning, Q. Song, H. Yin, MiR-34a inhibits viability and invasion of human papillomavirus-positive cervical cancer cells by targeting 2F3 and regulating survivin. Int. J. Gynecol. Cancer 25, 707–713 (2015)

    Article  PubMed  Google Scholar 

  37. J. Li, Z. Ping, H. Ning, MiR-218 impairs tumor growth and increases chemo-sensitivity to cisplatin in cervical cancer. Int. J. Mol. Sci. 13, 16053–16064 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. C. Lin, F. Huang, G. Shen, A. Yiming, MicroRNA-101 regulates the viability and invasion of cervical cancer cells. Int. J. Clin. Exp. Pathol. 8, 10148–10155 (2015)

    PubMed  PubMed Central  Google Scholar 

  39. L. Liu, X. Yu, X. Guo, Z. Tian, M. Su, Y. Long, C. Huang, F. Zhou, M. Liu, X. Wu, X. Wang, miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Mol. Med. Rep. 5, 753–760 (2012)

    CAS  PubMed  Google Scholar 

  40. K. Doberstein, N. Steinmeyer, A.-K. Hartmetz, W. Eberhardt, M. Mittelbronn, P.N. Harter, E. Juengel, R. Blaheta, J. Pfeilschifter, P. Gutwein, MicroRNA-145 targets the metalloprotease ADAM17 and is suppressed in renal cell carcinoma patients. Neoplasia 15, 218–230 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Y. Feng, J. Zhu, C. Ou, Z. Deng, M. Chen, W. Huang, L. Li, MicroRNA-145 inhibits tumour growth and metastasis in colorectal cancer by targeting fascin-1. Br. J. Cancer 110, 2300–2309 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. R. Liu, J. Liao, M. Yang, J. Sheng, H. Yang, Y. Wang, E. Pan, W. Guo, Y. Pu, S.J. Kim, L. Yin, The cluster of miR-143 and miR-145 affects the risk for esophageal squamous cell carcinoma through co-regulating fascin homolog 1. PLoS ONE 7, e33987 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. J. Qin, F. Wang, H. Jiang, J. Xu, Y. Jiang, Z. Wang, MicroRNA-145 suppresses cell migration and invasion by targeting paxillin in human colorectal cancer cells. Int. J. Clin. Exp. Pathol. 8, 1328–1340 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. D. Ren, M. Wang, W. Guo, S. Huang, Z. Wang, X. Zhao, H. Du, L. Song, X. Peng, Double-negative feedback loop between ZEB2 and miR-145 regulates epithelial-mesenchymal transition and stem cell properties in prostate cancer cells. Cell Tissue Res. 358, 763–778 (2014)

    Article  CAS  PubMed  Google Scholar 

  45. M. Sachdeva, Y.-Y. Mo, MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res. 70, 378–387 (2010)

    Article  CAS  PubMed  Google Scholar 

  46. J. Zhang, H. Guo, H. Zhang, H. Wang, G. Qian, X. Fan, A.R. Hoffman, J.-F. Hu, S. Ge, Putative tumor suppressor miR-145 inhibits colon cancer cell growth by targeting oncogene Friend leukemia virus integration 1 gene. Cancer 117, 86–95 (2011)

    Article  CAS  PubMed  Google Scholar 

  47. D. Dan Zhou, X. Wang, Y. Wang, X.J. Xiang, Z.C. Liang, Y. Zhou, A. Xu, C.H. Bi, L. Zhang, MicroRNA-145 inhibits hepatic stellate cell activation and proliferation by targeting ZEB2 through Wnt/β-catenin pathway. Mol. Immunol. 75, 151–160 (2016)

    Article  Google Scholar 

  48. Z. Jiang, Q. Song, R. Zeng, H. Werner, J. Li, X. Lin, X. Chen, J. Zhang, Y. Zheng, Z. Jiang, Q. Song, R. Zeng, MicroRNA-218 inhibits EMT, migration and invasion by targeting SFMBT1 and DCUN1D1 in cervical cancer. Oncotarget 7, 45622–45636 (2016)

    PubMed  PubMed Central  Google Scholar 

  49. Y. Cheng, G. Chen, C. Chen, Q. Zhang, F. Pan, M. Hu, B. Li, MicroRNA-200b inhibits epithelial-mesenchymal transition and migration of cervical cancer cells by directly targeting RhoE. Mol. Med. Rep. 13, 3139–3146 (2016)

    CAS  PubMed  Google Scholar 

  50. H. Xia, S.S. Ng, S. Jiang, W.K.C. Cheung, J. Sze, X.W. Bian, H. Fu Kung, M.C. Lin, miR-200a-mediated downregulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion. Biochem. Biophys. Res. Commun. 391, 535–541 (2010)

    Article  CAS  PubMed  Google Scholar 

  51. J. You, Y. Li, N. Fang, B. Liu, L. Zu, R. Chang, X. Li, Q. Zhou, MiR-132 suppresses the migration and invasion of lung cancer cells via targeting the EMT regulator ZEB2. PLoS ONE 9, e91827 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  52. E.V. Usova, M.R. Kopantseva, M.B. Kostina, A.N. Van’kovich, V.I. Egorov, E.P. Kopantsev, Expression of the ZEB2 gene in pancreatic stromal cells in pancreatic ductal adenocarcinoma, pancreatitis, and normal state. Dokl. Biol. Sci. 448, 61–64 (2013)

    Article  CAS  PubMed  Google Scholar 

  53. S. Qi, Y. Song, Y. Peng, H. Wang, H. Long, X. Yu, Z. Li, L. Fang, A. Wu, W. Luo, Y. Zhen, Y. Zhou, Y. Chen, C. Mai, Z. Liu, W. Fang, ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma. PLoS ONE 7, e38842 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. N. Cong, P. Du, A. Zhang, F. Shen, J. Su, P. Pu, T. Wang, J. Zjang, C. Kang, Q. Zhang, Downregulated microRNA-200a promotes EMT and tumor growth through the wnt/β-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma. Oncol. Rep. 29, 1579–1587 (2013)

    CAS  PubMed  Google Scholar 

  55. M.-Y. Cai, R.-Z. Luo, J.-W. Chen, X.-Q. Pei, J.-B. Lu, J.-H. Hou, J.-P. Yun, Overexpression of ZEB2 in peritumoral liver tissue correlates with favorable survival after curative resection of hepatocellular carcinoma. PLoS ONE 7, e32838 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. R. Yoshida, M. Morita, F. Shoji, Y. Nakashima, N. Miura, K. Yoshinaga, T. Koga, E. Tokunaga, H. Saeki, E. Oki, Y. Oda, Y. Maehara, Clinical significance of SIP1 and E-cadherin in patients with esophageal squamous cell carcinoma. Ann. Surg. Oncol. 22, 2608–2614 (2015)

    Article  PubMed  Google Scholar 

  57. Y.H. Kong, S.N. Syed Zanaruddin, S.H. Lau, A. Ramanathan, T.G. Kallarakkal, V.K. Vincent-Chong, W.M. Wan Mustafa, M.T. Abraham, Z.A. Abdul Rahman, R.B. Zain, S.C. Cheong, Co-expression of TWIST1 and ZEB2 in oral squamous cell carcinoma is associated with poor survival. PLoS ONE 10, e0134045 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  58. S. Elloul, M.B. Elstrand, J.M. Nesland, C.G. Tropé, G. Kvalheim, I. Goldberg, R. Reich, B. Davidson, Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer 103, 1631–1643 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (to D.K.) from the Department of Biotechnology, Goverment of India, an exploratory research grant project associateship (to K.S.C.) from the Centre for Industrial Consultancy and Sponsored Research, the Indian Institute of Technology, Madras, and by a senior research fellowship (to A.S.) from the Council of Scientific and Industrial Research, Government of India. The authors would like to thank Dr. Rao Srinivasa Rao, Nuffield, Department of Surgical Sciences, University of Oxford, Oxford, for his guidance in analysing the TCGA data, Dr. Radha Bai Prabhu, Institute of Obstetrics & Gynaecology and Government Hospital for Women and Children, Government of India and Dr. Prabhavathy Devan, Indian Institute of Technology, Madras, for their help in procurement of the clinical specimens. The TCGA data presented are based upon those generated by the TCGA Research Network (http://cancergenome.nih.gov/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devarajan Karunagaran.

Ethics declarations

The authors declare that there are no known conflicts of interest associated with this publication.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathyanarayanan, A., Chandrasekaran, K.S. & Karunagaran, D. microRNA-145 modulates epithelial-mesenchymal transition and suppresses proliferation, migration and invasion by targeting SIP1 in human cervical cancer cells. Cell Oncol. 40, 119–131 (2017). https://doi.org/10.1007/s13402-016-0307-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-016-0307-3

Keywords

Navigation