Skip to main content

Advertisement

Log in

Intrinsic cancer subtypes-next steps into personalized medicine

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Recent technological advances have significantly improved our understanding of tumor biology by means of high-throughput mutation and transcriptome analyses. The application of genomics has revealed the mutational landscape and the specific deregulated pathways in different tumor types. At a transcriptional level, multiple gene expression signatures have been developed to identify biologically distinct subgroups of tumors. By supervised analysis, several prognostic signatures have been generated, some of them being commercially available. However, an unsupervised approach is required to discover a priori unknown molecular subtypes, the so-called intrinsic subtypes. Moreover, an integrative analysis of the molecular events associated with tumor biology has been translated into a better tumor classification. This molecular characterization confers new opportunities for therapeutic strategies in the management of cancer patients. However, the applicability of these new molecular classifications is limited because of several issues such as technological validation and cost. Further comparison with well-established clinical and pathological features is expected to accelerate clinical translation. In this review, we will focus on the data reported on molecular classification in the most common tumor types such as breast, colorectal and lung carcinoma, with special emphasis on recent data regarding tumor intrinsic subtypes. Likewise, we will review the potential applicability of these new classifications in the clinical routine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A. Jemal et al., Global cancer statistics. CA Cancer J. Clin. 61(2), 69–90 (2011)

    Article  PubMed  Google Scholar 

  2. I. Nishisho et al., Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253(5020), 665–669 (1991)

    Article  CAS  PubMed  Google Scholar 

  3. W. Eiermann, Trastuzumab combined with chemotherapy for the treatment of HER2-positive metastatic breast cancer: pivotal trial data. Ann. Oncol. 12(Suppl 1), S57–S62 (2001)

    Article  PubMed  Google Scholar 

  4. A. Goldhirsch, et al., 2 years versus 1 year of adjuvant trastuzumab for HER2-positive breast cancer (HERA): an open-label, randomised controlled trial. Lancet 382(9897), 1021–1028

  5. S.M. Swain et al., Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 14(6), 461–471 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. B. Boyraz et al., Trastuzumab emtansine (T-DM1) for HER2-positive breast cancer. Curr. Med. Res. Opin. 29(4), 405–414 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. M. Cronin et al., Analytical validation of the Oncotype DX genomic diagnostic test for recurrence prognosis and therapeutic response prediction in node-negative, estrogen receptor-positive breast cancer. Clin. Chem. 53(6), 1084–1091 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. M.J. van de Vijver et al., A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347(25), 1999–2009 (2002)

    Article  PubMed  Google Scholar 

  9. R. Salazar et al., Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J. Clin. Oncol. 29(1), 17–24 (2010)

    Article  PubMed  Google Scholar 

  10. Director’s Challenge Consortium for the Molecular Classification of Lung, A et al., Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat. Med. 14(8), 822–827 (2008)

    Article  Google Scholar 

  11. C.M. Perou et al., Molecular portraits of human breast tumours. Nature 406(6797), 747–752 (2000)

    Article  CAS  PubMed  Google Scholar 

  12. L.H. Sobin, TNM: evolution and relation to other prognostic factors. Semin. Surg. Oncol. 21(1), 3–7 (2003)

    Article  PubMed  Google Scholar 

  13. M. Cianfrocca, L.J. Goldstein, Prognostic and predictive factors in early-stage breast cancer. Oncologist 9(6), 606–616 (2004)

    Article  PubMed  Google Scholar 

  14. T. Utsumi, N. Kobayashi, H. Hanada, Recent perspectives of endocrine therapy for breast cancer. Breast Cancer 14(2), 194–199 (2007)

    Article  PubMed  Google Scholar 

  15. C.A. Hudis, Trastuzumab–mechanism of action and use in clinical practice. N. Engl. J. Med. 357(1), 39–51 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. M.C. Paterson et al., Correlation between c-erbB-2 amplification and risk of recurrent disease in node-negative breast cancer. Cancer Res. 51(2), 556–567 (1991)

    CAS  PubMed  Google Scholar 

  17. V. Guarneri, P.F. Conte, The curability of breast cancer and the treatment of advanced disease. Eur. J. Nucl. Med. Mol. Imaging 31(Suppl 1), S149–S161 (2004)

    Article  PubMed  Google Scholar 

  18. X. Lu, Y. Kang, Organotropism of breast cancer metastasis. J. Mammary Gland Biol. Neoplasia 12(2–3), 153–162 (2007)

    Article  PubMed  Google Scholar 

  19. M. Gnant et al., Predicting distant recurrence in receptor-positive breast cancer patients with limited clinicopathological risk: using the PAM50 Risk of Recurrence score in 1478 postmenopausal patients of the ABCSG-8 trial treated with adjuvant endocrine therapy alone. Ann. Oncol. 25(2), 339–345 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. M. Martin et al., Clinical validation of the EndoPredict test in node-positive, chemotherapy-treated ER+/HER2- breast cancer patients: results from the GEICAM 9906 trial. Breast Cancer Res. 16(2), R38 (2014)

    Article  PubMed Central  PubMed  Google Scholar 

  21. R. Sanz-Pamplona et al., Expression of endoplasmic reticulum stress proteins is a candidate marker of brain metastasis in both ErbB-2+ and ErbB-2- primary breast tumors. Am. J. Pathol. 179(2), 564–579 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  22. Y. Kang et al., A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6), 537–549 (2003)

    Article  CAS  PubMed  Google Scholar 

  23. A.J. Minn et al., Genes that mediate breast cancer metastasis to lung. Nature 436(7050), 518–524 (2005)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. K. Driouch et al., Gene arrays for diagnosis, prognosis and treatment of breast cancer metastasis. Clin. Exp. Metastasis 24(8), 575–585 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. T. Sorlie et al., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. U. S. A. 98(19), 10869–10874 (2001)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. A. Prat, C.M. Perou, Deconstructing the molecular portraits of breast cancer. Mol. Oncol. 5(1), 5–23 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. T. Sorlie et al., Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. U. S. A. 100(14), 8418–8423 (2003)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. R.D. Baird, C. Caldas, Genetic heterogeneity in breast cancer: the road to personalized medicine? BMC Med. 11, 151 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  29. M. Smid et al., Subtypes of breast cancer show preferential site of relapse. Cancer Res. 68(9), 3108–3114 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. R. Rouzier et al., Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res. 11(16), 5678–5685 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. J.S. Parker et al., Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27(8), 1160–1167 (2009)

    Article  PubMed Central  PubMed  Google Scholar 

  32. M. Dowsett et al., Comparison of PAM50 risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J. Clin. Oncol. 31(22), 2783–2790 (2013)

    Article  PubMed  Google Scholar 

  33. J.I. Herschkowitz et al., Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 8(5), R76 (2007)

    Article  PubMed Central  PubMed  Google Scholar 

  34. A. Prat et al., Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 12(5), R68 (2010)

    Article  PubMed Central  PubMed  Google Scholar 

  35. C. Curtis et al., The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403), 346–352 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Comprehensive molecular portraits of human breast tumours. Nature 490(7418), 61–70

  37. P.J. Stephens et al., The landscape of cancer genes and mutational processes in breast cancer. Nature 486(7403), 400–404 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  38. M.J. Ellis et al., Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486(7403), 353–360 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  39. S. Banerji et al., Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486(7403), 405–409 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. M.J. Ellis, C.M. Perou, The genomic landscape of breast cancer as a therapeutic roadmap. Cancer Discov. 3(1), 27–34 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. A. Goldhirsch et al., Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 24(9), 2206–2223 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. J.B. O’Connell, M.A. Maggard, C.Y. Ko, Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J. Natl. Cancer Inst. 96(19), 1420–1425 (2004)

    Article  PubMed  Google Scholar 

  43. T. Andre et al., Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N. Engl. J. Med. 350(23), 2343–2351 (2004)

    Article  CAS  PubMed  Google Scholar 

  44. S. Gill et al., Pooled analysis of fluorouracil-based adjuvant therapy for stage II and III colon cancer: who benefits and by how much? J. Clin. Oncol. 22(10), 1797–1806 (2004)

    Article  CAS  PubMed  Google Scholar 

  45. A.B.. Benson 3rd et al., American Society of Clinical Oncology recommendations on adjuvant chemotherapy for stage II colon cancer. J. Clin. Oncol. 22(16), 3408–3419 (2004)

  46. E. Van Cutsem, J. Oliveira, Primary colon cancer: ESMO clinical recommendations for diagnosis, adjuvant treatment and follow-up. Ann. Oncol. 20(Suppl 4), 49–50 (2009)

    PubMed  Google Scholar 

  47. E.R. Fearon, Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 6, 479–507 (2011)

    Article  CAS  PubMed  Google Scholar 

  48. C. Sweeney et al., Oncogenetic tree model of somatic mutations and DNA methylation in colon tumors. Genes Chromosom. Cancer 48(1), 1–9 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. M. Toyota et al., CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. U. S. A. 96(15), 8681–8686 (1999)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. J.R. Jass, Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 50(1), 113–130 (2007)

    Article  CAS  PubMed  Google Scholar 

  51. S. Ogino, A. Goel, Molecular classification and correlates in colorectal cancer. J. Mol. Diagn. 10(1), 13–27 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. G.P. Kim et al., Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project Collaborative Study. J. Clin. Oncol. 25(7), 767–772 (2007)

    Article  CAS  PubMed  Google Scholar 

  53. G. Hutchins et al., Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J. Clin. Oncol. 29(10), 1261–1270 (2011)

    Article  PubMed  Google Scholar 

  54. G. Yothers et al., Validation of the 12-gene colon cancer recurrence score in NSABP C-07 as a predictor of recurrence in patients with stage II and III colon cancer treated with fluorouracil and leucovorin (FU/LV) and FU/LV plus oxaliplatin. J. Clin. Oncol. 31(36), 4512–4519 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. S. Kopetz, et al., Genomic classifier (ColoPrint) to predict outcome and chemotherapy benefit in stage II and III colon cancer patients. J. Clin. Oncol. 31, (2013). ((suppl; abstr 3612))

  56. L. Marisa et al., Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 10(5), e1001453 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. A. Loboda et al., EMT is the dominant program in human colon cancer. BMC Med. Genom. 4, 9 (2011)

    Article  Google Scholar 

  58. E. Budinska et al., Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. J. Pathol. 231(1), 63–76 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. P. Roepman et al., Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition. Int. J. Cancer 134(3), 552–562 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  60. B. Perez-Villamil et al., Colon cancer molecular subtypes identified by expression profiling and associated to stroma, mucinous type and different clinical behavior. BMC Cancer 12, 260 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. E.M.F. De Sousa et al., Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat. Med. 19(5), 614–618 (2013)

    Article  Google Scholar 

  62. A. Schlicker et al., Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines. BMC Med. Genom. 5, 66 (2013)

    Article  Google Scholar 

  63. A. Sadanandam et al., A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat. Med. 19(5), 619–625 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407), 330–337 (2012)

  65. S.C. Oh et al., Prognostic gene expression signature associated with two molecularly distinct subtypes of colorectal cancer. Gut 61(9), 1291–1298 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  66. R. Dienstmann, et al., Colorectal Cancer Subtyping Consortium (CRCSC) identification of a consensus of molecular subtypes. J. Clin. Oncol. 32, (2014). ((suppl; abstr 3511))

  67. W.D. Travis et al., International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society: international multidisciplinary classification of lung adenocarcinoma: executive summary. Proc. Am. Thorac. Soc. 8(5), 381–385 (2011)

    Article  PubMed  Google Scholar 

  68. A. Warth et al., The novel histologic International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification system of lung adenocarcinoma is a stage-independent predictor of survival. J. Clin. Oncol. 30(13), 1438–1446 (2012)

    Article  PubMed  Google Scholar 

  69. F.C. Detterbeck, D.J. Boffa, L.T. Tanoue, The new lung cancer staging system. Chest 136(1), 260–271 (2009)

    Article  PubMed  Google Scholar 

  70. National Comprehensive Cancer Network. Non-Small Cell Lung Cancer (v 3.2014). Available from: http://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf

  71. L.M. Sholl et al., EGFR mutation is a better predictor of response to tyrosine kinase inhibitors in non-small cell lung carcinoma than FISH, CISH, and immunohistochemistry. Am. J. Clin. Pathol. 133(6), 922–934 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. K. Takeuchi et al., RET, ROS1 and ALK fusions in lung cancer. Nat. Med. 18(3), 378–381 (2012)

    Article  CAS  PubMed  Google Scholar 

  73. B.E. Johnson, et al., A multicenter effort to identify driver mutations and employ targeted therapy in patients with lung adenocarcinomas: the Lung Cancer Mutation Consortium (LCMC). J Clin Oncol. 31, (2013). (suppl; abstr 8019)

  74. F. Barlesi, et al., Biomarkers (BM) France: Results of routine EGFR, HER2, KRAS, BRAF, PI3KCA mutations detection and EML4-ALK gene fusion assessment on the first 10,000 non-small cell lung cancer (NSCLC) patients (pts). J. Clin. Oncol. 31, (2013). (suppl; abstr 8000)

  75. L. West et al., A novel classification of lung cancer into molecular subtypes. PLoS One 7(2), e31906 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. A. Bhattacharjee et al., Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. U. S. A. 98(24), 13790–13795 (2001)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. M.E. Garber et al., Diversity of gene expression in adenocarcinoma of the lung. Proc. Natl. Acad. Sci. U. S. A. 98(24), 13784–13789 (2001)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. D.G. Beer et al., Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 8(8), 816–824 (2002)

    CAS  PubMed  Google Scholar 

  79. S. Tomida et al., Gene expression-based, individualized outcome prediction for surgically treated lung cancer patients. Oncogene 23(31), 5360–5370 (2004)

    Article  CAS  PubMed  Google Scholar 

  80. T. Takeuchi et al., Expression profile-defined classification of lung adenocarcinoma shows close relationship with underlying major genetic changes and clinicopathologic behaviors. J. Clin. Oncol. 24(11), 1679–1688 (2006)

    Article  CAS  PubMed  Google Scholar 

  81. S. Tomida et al., Relapse-related molecular signature in lung adenocarcinomas identifies patients with dismal prognosis. J. Clin. Oncol. 27(17), 2793–2799 (2009)

    Article  CAS  PubMed  Google Scholar 

  82. Y. Yatabe, T. Mitsudomi, T. Takahashi, TTF-1 expression in pulmonary adenocarcinomas. Am. J. Surg. Pathol. 26(6), 767–773 (2002)

    Article  PubMed  Google Scholar 

  83. H.Y. Chen et al., A five-gene signature and clinical outcome in non-small-cell lung cancer. N. Engl. J. Med. 356(1), 11–20 (2007)

    Article  CAS  PubMed  Google Scholar 

  84. A. Potti et al., A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N. Engl. J. Med. 355(6), 570–580 (2006)

    Article  CAS  PubMed  Google Scholar 

  85. C.M. Bryant et al., Clinically relevant characterization of lung adenocarcinoma subtypes based on cellular pathways: an international validation study. PLoS One 5(7), e11712 (2010)

    Article  PubMed Central  PubMed  Google Scholar 

  86. D.N. Hayes et al., Gene expression profiling reveals reproducible human lung adenocarcinoma subtypes in multiple independent patient cohorts. J. Clin. Oncol. 24(31), 5079–5090 (2006)

    Article  CAS  PubMed  Google Scholar 

  87. M.D. Wilkerson et al., Differential pathogenesis of lung adenocarcinoma subtypes involving sequence mutations, copy number, chromosomal instability, and methylation. PLoS One 7(5), e36530 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. B. Angulo et al., Expression signatures in lung cancer reveal a profile for EGFR-mutant tumours and identify selective PIK3CA overexpression by gene amplification. J. Pathol. 214(3), 347–356 (2008)

    Article  CAS  PubMed  Google Scholar 

  89. D. Chitale et al., An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene 28(31), 2773–2783 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. H. Okayama et al., Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. 72(1), 100–111 (2012)

    Article  CAS  PubMed  Google Scholar 

  91. M. Planck et al., Genomic and transcriptional alterations in lung adenocarcinoma in relation to EGFR and KRAS mutation status. PLoS One 8(10), e78614 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. M. Planck et al., Identification of transcriptional subgroups in EGFR-mutated and EGFR/KRAS wild-type lung adenocarcinoma reveals gene signatures associated with patient outcome. Clin. Cancer Res. 19(18), 5116–5126 (2013)

    Article  CAS  PubMed  Google Scholar 

  93. K. Inamura et al., Two subclasses of lung squamous cell carcinoma with different gene expression profiles and prognosis identified by hierarchical clustering and non-negative matrix factorization. Oncogene 24(47), 7105–7113 (2005)

    Article  CAS  PubMed  Google Scholar 

  94. J.E. Larsen et al., Expression profiling defines a recurrence signature in lung squamous cell carcinoma. Carcinogenesis 28(3), 760–766 (2007)

    Article  CAS  PubMed  Google Scholar 

  95. M. Raponi et al., Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung. Cancer Res. 66(15), 7466–7472 (2006)

    Article  CAS  PubMed  Google Scholar 

  96. M.D. Wilkerson et al., Lung squamous cell carcinoma mRNA expression subtypes are reproducible, clinically important, and correspond to normal cell types. Clin. Cancer Res. 16(19), 4864–4875 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489(7417), 519–525 (2012)

  98. C.Q. Zhu et al., Prognostic and predictive gene signature for adjuvant chemotherapy in resected non-small-cell lung cancer. J. Clin. Oncol. 28(29), 4417–4424 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. D.T. Chen et al., Prognostic and predictive value of a malignancy-risk gene signature in early-stage non-small cell lung cancer. J. Natl. Cancer Inst. 103(24), 1859–1870 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Y.Y. Park et al., Development and validation of a prognostic gene-expression signature for lung adenocarcinoma. PLoS One 7(9), e44225 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. H. Tang et al., A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients. Clin. Cancer Res. 19(6), 1577–1586 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. J. Subramanian, R. Simon, Gene expression-based prognostic signatures in lung cancer: ready for clinical use? J. Natl. Cancer Inst. 102(7), 464–474 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. B. Vogelstein et al., Cancer genome landscapes. Science 339(6127), 1546–1558 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. A. Calon et al., Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell 22(5), 571–584 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. U. Sack et al., S100A4-induced cell motility and metastasis is restricted by the Wnt/beta-catenin pathway inhibitor calcimycin in colon cancer cells. Mol. Biol. Cell 22(18), 3344–3354 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. R. Dienstmann et al., Genomic medicine frontier in human solid tumors: prospects and challenges. J. Clin. Oncol. 31(15), 1874–1884 (2013)

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Instituto de Salud Carlos III (FIS PI11-01439), CIBERESP CB07/02/2005, the Spanish Association Against Cancer (AECC) Scientific Foundation and Fundación Carolina-BBVA.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Salazar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, C., Sanz-Pamplona, R., Nadal, E. et al. Intrinsic cancer subtypes-next steps into personalized medicine. Cell Oncol. 38, 3–16 (2015). https://doi.org/10.1007/s13402-014-0203-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-014-0203-7

Keywords

Navigation