Skip to main content
Log in

A novel approach toward the bio-inspired synthesis of CuO nanoparticles for phenol degradation and antimicrobial applications

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Nanotechnology has been a widespread field for the last decade, but the clean and sustainable development of nanomaterials is a stimulating task for researchers in the current situation. The green synthesis of nanomaterial using plant extract is the most practiced chore of researchers, but the use of inorganic and organic bases makes them valueless. Herein, we first report the biogenic synthesis of copper oxide nanoparticles (CuO NPs) using human urine as a reducing agent. The XRD analysis confirmed the crystalline nature and synthesis of CuO NPs, where the grain size was found to be 6.78 nm. The absorption-desorption study of human urine–mediated synthesized CuO NPs was done with the BET technique, and the pore volume and surface area were found to be 0.06 cm3/g and 92.64 nm, respectively. Finally, the spherical morphology was confirmed by SEM analysis, and elemental analysis confirmed the formation of CuO NPs using human urine. The well-characterized CuO NPs were used for the eco-friendly degradation of phenol in aqueous media under sunlight, and the removal efficiency was recorded using a spectrophotometer. The antibacterial activity of synthesized CuO NPs was tested against gram-positive and gram-negative pathogenic bacteria. Also, the antifungal activity was verified against different fungal strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16.
Fig. 17

Similar content being viewed by others

Abbreviations

BET:

Brunauer-Emmett-Teller

BJH:

Barrett-Joyner-Halenda

EDX:

Energy-dispersive X-ray spectroscopy

FTIR:

Fourier-transform infrared spectroscopy

CuO NPs:

Copper oxide nanoparticles

MIC:

Minimal inhibitory concentration

mm:

Millimeter

NPs:

Nanoparticles

PL:

Photoluminescence

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

UVDRS:

Ultraviolet visible diffuse reflectance spectroscopy

XRD:

X-ray diffraction

References

  1. Hansen SF, Arvidsson R, Nielsen MB, Hansen OFH, Clausen LPW, Baun A, Boldrin A (2022) Nanotechnology meets circular economy. Nat Nanotechnol 17:682–685. https://doi.org/10.1038/s41565-022-01157-6

    Article  Google Scholar 

  2. Chee P, Toh W, Yew P, Peng S, Kai D (2022) Introduction of nanotechnology and sustainability. In: Li Z, Zheng J, Ye E (eds) Sustainable Nanotechnology. Royal Society of Chemistry, pp 1–32. https://doi.org/10.1039/9781839165771-00001

    Book  Google Scholar 

  3. Singh A, Amiji MM (2022) Application of nanotechnology in medical diagnosis and imaging. Curr Opin Biotechnol 74:241–246. https://doi.org/10.1016/j.copbio.2021.12.011

    Article  Google Scholar 

  4. Ekrami E, Pouresmaieli M, Sadat Hashemiyoon E, Noorbakhsh N, Mahmoudifard M (2022) Nanotechnology: a sustainable solution for heavy metals remediation. Environ Nanotechnol Monit Manag 18:100718. https://doi.org/10.1016/j.enmm.2022.100718

    Article  Google Scholar 

  5. Ghotekar S (2019) A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian J Green Chem 3:187–200. https://doi.org/10.22034/ajgc.2018.140313.1084

    Article  Google Scholar 

  6. Korde P, Ghotekar S, Pagar T, Pansambal S, Oza R, Mane D (2020) Plant extract assisted eco-benevolent synthesis of selenium nanoparticles-a review on plant parts involved, characterization and their recent applications. J Chem Rev 2:157–168. https://doi.org/10.22034/jcr.2020.106601

    Article  Google Scholar 

  7. Ghotekar S, Pansambal S, Bilal M, Pingale SS, Oza R (2021) Environmentally friendly synthesis of Cr2O3 nanoparticles: characterization, applications and future perspective─ a review. Case Stud Chem Environ Eng 3:100089. https://doi.org/10.1016/j.cscee.2021.100089

    Article  Google Scholar 

  8. Kashid Y, Ghotekar S, Bilal M, Pansambal S, Oza R, Varma RS, Nguyen V-H, Murthy HA, Mane D (2022) Bio-inspired sustainable synthesis of silver chloride nanoparticles and their prominent applications. J Indian Chem Soc 100335. https://doi.org/10.1016/j.jics.2021.100335

  9. Ghotekar S, Pansambal S, Lin K-YA, Pore D, Oza R (2022) Recent advances in synthesis of CeVO4 nanoparticles and their potential scaffold for photocatalytic applications. Top Catal 66(1-4):89–103. https://doi.org/10.1007/s11244-022-01630-5

    Article  Google Scholar 

  10. Vijayakumar M, Surendhar G, Natrayan L, Patil PP, Ram P, Paramasivam P (2022) Evolution and recent scenario of nanotechnology in agriculture and food industries. J Nanomater 2022. https://doi.org/10.1155/2022/1280411

  11. Zain M, Yasmeen H, Yadav SS, Amir S, Bilal M, Shahid A, Khurshid M (2022) Applications of nanotechnology in biological systems and medicine. In: Nanotechnology for hematology, blood transfusion, and artificial blood. Elsevier, pp 215–235. https://doi.org/10.1016/B978-0-12-823971-1.00019-2

    Chapter  Google Scholar 

  12. Soni RA, Rizwan M, Singh S (2022) Opportunities and potential of green chemistry in nanotechnology. Nanotechnol Environ Eng 7(3):661–673. https://doi.org/10.1007/s41204-022-00233-5

    Article  Google Scholar 

  13. Pansambal S, Oza R, Borgave S, Chauhan A, Bardapurkar P, Vyas S, Ghotekar S (2022) Bioengineered cerium oxide (CeO2) nanoparticles and their diverse applications: a review. Appl Nanosci:1–26. https://doi.org/10.1007/s13204-022-02574-8

  14. Gur T, Meydan I, Seckin H, Bekmezci M, Sen F (2022) Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles. Environ Res 204:111897. https://doi.org/10.1016/j.envres.2021.111897

    Article  Google Scholar 

  15. Pansambal S, Roy A, Mohamed HEA, Oza R, Vu CM, Marzban A, Chauhan A, Ghotekar S (2022) Murthy H Recent developments on magnetically separable ferrite-based nanomaterials for removal of environmental pollutants. J Nanomater. https://doi.org/10.1155/2022/8560069

  16. Tran TV, Nguyen DTC, Kumar PS, Din ATM, Jalil AA, Vo D-VN (2022) Green synthesis of ZrO2 nanoparticles and nanocomposites for biomedical and environmental applications: a review. Environ Chem Lett:1–23. https://doi.org/10.1007/s10311-021-01367-9

  17. Dabhane H, Ghotekar SK, Tambade PJ, Pansambal S, Ananda Murthy H, Oza R, Medhane V (2021) Cow urine mediated green synthesis of nanomaterial and their applications: a state-of-the-art review. J Water Environ Nanotechnol 6:81–91. https://doi.org/10.22090/jwent.2021.01.008

    Article  Google Scholar 

  18. Wang J, Wang Z, Wang W, Wang Y, Hu X, Liu J, Gong X, Miao W, Ding L, Li X (2022) Synthesis, modification and application of titanium dioxide nanoparticles: a review. Nanoscale. https://doi.org/10.1039/D1NR08349J

  19. Aswathi V, Meera S, Maria C, Nidhin M (2022) Green synthesis of nanoparticles from biodegradable waste extracts and their applications: a critical review. Nanotechnol Environ Eng:1–21. https://doi.org/10.1007/s41204-022-00276-8

  20. Barwant M, Ugale Y, Ghotekar S, Basnet P, Nguyen V-H, Pansambal S, Ananda Murthy H, Sillanpaa M, Bilal M, Oza R (2022) Eco-friendly synthesis and characterizations of Ag/AgO/Ag2O nanoparticles using leaf extracts of Solanum elaeagnifolium for antioxidant, anticancer, and DNA cleavage activities. Chem Pap:1–13. https://doi.org/10.1007/s11696-022-02178-0

  21. Nguyen TP, Nguyen QV, Nguyen V-H, Le T-H, Huynh VQN, Vo D-VN, Trinh QT, Kim SY, Le QV (2019) Silk fibroin-based biomaterials for biomedical applications: a review. Polymers 11:1933. https://doi.org/10.3390/polym11121933

    Article  Google Scholar 

  22. Madani M, Hosny S, Alshangiti DM, Nady N, Alkhursani SA, Alkhaldi H, Al-Gahtany SA, Ghobashy MM, Gaber GA (2022) Green synthesis of nanoparticles for varied applications: green renewable resources and energy-efficient synthetic routes. Nanotechnol Rev 11:731–759. https://doi.org/10.1515/ntrev-2022-0034

    Article  Google Scholar 

  23. Marzban A, Mirzaei SZ, Karkhane M, Ghotekar SK, Danesh A (2022) Biogenesis of copper nanoparticles assisted with seaweed polysaccharide with antibacterial and antibiofilm properties against methicillin-resistant Staphylococcus aureus. J Drug Deliv Sci Technol 74:103499. https://doi.org/10.1016/j.jddst.2022.103499

    Article  Google Scholar 

  24. Ateia M, Ersan G, Alalm MG, Boffito DC, Karanfil T (2022) Emerging investigator series: microplastics sources, fate, toxicity, detection, and interactions with micropollutants in aquatic ecosystems–a review of reviews. Environ Sci: Process Impacts. https://doi.org/10.1039/D1EM00443C

  25. Sudhaik A, Raizada P, Ahamad T, Alshehri SM, Nguyen V-H, Van Le Q, Thakur S, Thakur VK, Selvasembian R, Singh P (2022) Recent advances in cellulose supported photocatalysis for pollutant mitigation: a review. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2022.11.241

  26. Shultana S, Khan RA (2022) Water quality assessment, reasons of river water pollution, impact on human health and remediation of polluted river water. GSC Adv Res Rev 10:107–115. https://doi.org/10.30574/gscarr.2022.10.2.0053

    Article  Google Scholar 

  27. Alemu A, Lemma B, Gabbiye N, Alula MT, Desta MT (2018) Removal of chromium (VI) from aqueous solution using vesicular basalt: a potential low cost wastewater treatment system. Heliyon 4:e00682. https://doi.org/10.1016/j.heliyon.2018.e00682

    Article  Google Scholar 

  28. Van Tran T, Nguyen DTC, Kumar PS, Din ATM, Qazaq AS, Vo D-VN (2022) Green synthesis of Mn3O4 nanoparticles using Costus woodsonii flowers extract for effective removal of malachite green dye. Environ Res 214:113925. https://doi.org/10.1016/j.envres.2022.113925

    Article  Google Scholar 

  29. Del Rio DDF, Sovacool BK, Griffiths S, Bazilian M, Kim J, Foley AM, Rooney D (2022) Decarbonizing the pulp and paper industry: a critical and systematic review of sociotechnical developments and policy options. Renew Sustain Energy Rev 167:112706. https://doi.org/10.1016/j.rser.2022.112706

    Article  Google Scholar 

  30. Saravanan A, Kumar PS, Jeevanantham S, Anubha M, Jayashree S (2022) Degradation of toxic agrochemicals and pharmaceutical pollutants: effective and alternative approaches toward photocatalysis. Environ Pollut 118844. https://doi.org/10.1016/j.envpol.2022.118844

  31. Nayak R, Ali FA, Mishra DK, Ray D, Aswal V, Sahoo SK, Nanda B (2020) Fabrication of CuO nanoparticle: an efficient catalyst utilized for sensing and degradation of phenol. J Mater Res Technol 9:11045–11059. https://doi.org/10.1016/j.jmrt.2020.07.100

    Article  Google Scholar 

  32. Abarian M, Hassanshahian M, Esbah A (2019) Degradation of phenol at high concentrations using immobilization of Pseudomonas putida P53 into sawdust entrapped in sodium-alginate beads. Water Sci Technol 79:1387–1396. https://doi.org/10.2166/wst.2019.134

    Article  Google Scholar 

  33. Cabaja J, Agnieszka J, Karol M, Agnieszka Ś, Jadwiga S (2016) Optical biosensor for permanent monitoring of phenol derivatives in water solutions. Chem Eng Trans 47. https://doi.org/10.3303/CET1647003

  34. Rao S, As S, Jayaprakash GK, Swamy MM, Kumar D (2022) Plant seed extract assisted, eco-synthesized C-ZnO nanoparticles: characterization, chromium (VI) ion adsorption and kinetic studies. Luminescence. https://doi.org/10.1002/bio.4213

  35. Baishnisha A, Divakaran K, Balakumar V, Perumal KN, Meenakshi C, Kannan RS (2021) Synthesis of highly efficient g-CN@ CuO nanocomposite for photocatalytic degradation of phenol under visible light. J Alloys Compd 886:161167. https://doi.org/10.1016/j.jallcom.2021.161167

    Article  Google Scholar 

  36. Scott T, Zhao H, Deng W, Feng X, Li Y (2019) Photocatalytic degradation of phenol in water under simulated sunlight by an ultrathin MgO coated Ag/TiO2 nanocomposite. Chemosphere 216:1–8. https://doi.org/10.1016/j.chemosphere.2018.10.083

    Article  Google Scholar 

  37. Ling H, Kim K, Liu Z, Shi J, Zhu X, Huang J (2015) Photocatalytic degradation of phenol in water on as-prepared and surface modified TiO2 nanoparticles. Catal Today 258:96–102. https://doi.org/10.1016/j.cattod.2015.03.048

    Article  Google Scholar 

  38. Al-Hamdi AM, Sillanpää M, Bora T, Dutta J (2016) Efficient photocatalytic degradation of phenol in aqueous solution by SnO2: Sb nanoparticles. Appl Surf Sci 370:229–236. https://doi.org/10.1016/j.apsusc.2016.02.123

    Article  Google Scholar 

  39. Zhang Y, Zhao G, Xuan Y, Gan L, Pan M (2021) Enhanced photocatalytic performance for phenol degradation using ZnO modified with nano-biochar derived from cellulose nanocrystals. Cellulose 28:991–1009. https://doi.org/10.1007/s10570-020-03581-0

    Article  Google Scholar 

  40. Cuong HN, Pansambal S, Ghotekar S, Oza R, Hai NTT, Viet NM, Nguyen V-H (2022) New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: a review. Environ Res 203:111858. https://doi.org/10.1016/j.envres.2021.111858

    Article  Google Scholar 

  41. Chakraborty N, Banerjee J, Chakraborty P, Banerjee A, Chanda S, Ray K, Acharya K, Sarkar J (2022) Green synthesis of copper/copper oxide nanoparticles and their applications: a review. Green Chem Lett Rev 15:187–215. https://doi.org/10.1080/17518253.2022.2025916

    Article  Google Scholar 

  42. Gawande MB, Goswami A, Felpin F-X, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482

    Article  Google Scholar 

  43. Pansambal S, Deshmukh K, Savale A, Ghotekar S, Pardeshi O, Jain G, Aher Y, Pore D (2017) Phytosynthesis and biological activities of fluorescent CuO nanoparticles using Acanthospermum hispidum L. extract. J Nanostructures 7:165–174. https://doi.org/10.22052/JNS.2017.03.001

    Article  Google Scholar 

  44. Pagar K, Ghotekar S, Pagar T, Nikam A, Pansambal S, Oza R, Sanap D, Dabhane H (2020) Antifungal activity of biosynthesized CuO nanoparticles using leaves extract of Moringa oleifera and their structural characterizations. Asian J Nanosci Mater 3:15–23. https://doi.org/10.26655/AJNANOMAT.2020.1.2

    Article  Google Scholar 

  45. Nagore P, Ghotekar S, Mane K, Ghoti A, Bilal M, Roy A (2021) Structural properties and antimicrobial activities of Polyalthia longifolia leaf extract-mediated CuO nanoparticles. BioNanoScience 11:579–589. https://doi.org/10.1007/s12668-021-00851-4

    Article  Google Scholar 

  46. Dulta K, Koşarsoy Ağçeli G, Chauhan P, Jasrotia R, Chauhan P, Ighalo JO (2022) Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustain Environ Res 32:1–15. https://doi.org/10.1186/s42834-021-00111-w

    Article  Google Scholar 

  47. Kannan K, Radhika D, Vijayalakshmi S, Sadasivuni KK, Ojiaku A, Verma U (2022) Facile fabrication of CuO nanoparticles via microwave-assisted method: photocatalytic, antimicrobial and anticancer enhancing performance. Int J Environ Anal Chem 102:1095–1108. https://doi.org/10.1080/03067319.2020.1733543

    Article  Google Scholar 

  48. Murthy HA, Zeleke TD, Tan K, Ghotekar S, Alam MW, Balachandran R, Chan K-Y, Sanaulla P, Kumar MA, Ravikumar C (2021) Enhanced multifunctionality of CuO nanoparticles synthesized using aqueous leaf extract of Vernonia amygdalina plant. Results Chem 3:100141. https://doi.org/10.1016/j.rechem.2021.100141

    Article  Google Scholar 

  49. Sibhatu AK, Weldegebrieal GK, Sagadevan S, Tran NN, Hessel V (2022) Photocatalytic activity of CuO nanoparticles for organic and inorganic pollutants removal in wastewater remediation. Chemosphere 134623. https://doi.org/10.1016/j.chemosphere.2022.134623

  50. George A, Raj DMA, Venci X, Raj AD, Irudayaraj AA, Josephine R, Sundaram SJ, Al-Mohaimeed AM, Al Farraj DA, Chen T-W (2022) Photocatalytic effect of CuO nanoparticles flower-like 3D nanostructures under visible light irradiation with the degradation of methylene blue (MB) dye for environmental application. Environ Res 203:111880. https://doi.org/10.1016/j.envres.2021.111880

    Article  Google Scholar 

  51. Raizada P, Sudhaik A, Patial S, Hasija V, Khan AAP, Singh P, Gautam S, Kaur M, Nguyen V-H (2020) Engineering nanostructures of CuO-based photocatalysts for water treatment: current progress and future challenges. Arab J Chem 13:8424–8457. https://doi.org/10.1016/j.arabjc.2020.06.031

    Article  Google Scholar 

  52. Aibinu AM, Folorunso TA, Saka AA, Ogunfowora LA, Iwuozor KO, Ighalo JO (2022) Green synthesis of CuO nanocomposite from watermelon (Citrullus lanatus) rind for the treatment of aquaculture effluent. Reg Stud Mar Sci 52:102308. https://doi.org/10.1016/j.rsma.2022.102308

    Article  Google Scholar 

  53. Arunkumar B, Jothibas M, Jeyakumar SJ (2022) Blue dye degradation effect of green chemical synthesized CuO nanoparticles. Mater Today: Proc 66:2207–2214. https://doi.org/10.1016/j.matpr.2022.06.038

    Article  Google Scholar 

  54. Akintelu SA, Folorunso AS, Folorunso FA, Oyebamiji AK (2020) Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon 6:e04508. https://doi.org/10.1016/j.heliyon.2020.e04508

    Article  Google Scholar 

  55. Waris A, Din M, Ali A, Ali M, Afridi S, Baset A, Khan AU (2021) A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorg Chem Comm 123:108369. https://doi.org/10.1016/j.inoche.2020.108369

    Article  Google Scholar 

  56. Chauhan A, Kumari S, Verma R, Dutta V, Ghotekar S, Kaur M, Kulshrestha S, Singh K, Lin K-YA, Kumar R (2022) Fabrication of copper oxide nanoparticles via microwave and green approaches and their antimicrobial potential. Chem Pap:1–16. https://doi.org/10.1007/s11696-022-02407-6

  57. Gopinath V, Priyadarshini S, Al-Maleki A, Alagiri M, Yahya R, Saravanan S, Vadivelu J (2016) In vitro toxicity, apoptosis and antimicrobial effects of phyto-mediated copper oxide nanoparticles. RSC Adv 6:110986–110995. https://doi.org/10.1039/C6RA13871C

    Article  Google Scholar 

  58. Velsankar K, Rm AK, Preethi R, Muthulakshmi V, Sudhahar S (2020) Green synthesis of CuO nanoparticles via Allium sativum extract and its characterizations on antimicrobial, antioxidant, antilarvicidal activities. J Environ Chem Eng 8:104123. https://doi.org/10.1016/j.jece.2020.104123

    Article  Google Scholar 

  59. Zedan AF, Mohamed AT, El-Shall MS, AlQaradawi SY, AlJaber AS (2018) Tailoring the reducibility and catalytic activity of CuO nanoparticles for low temperature CO oxidation. RSC Adv 8:19499–19511. https://doi.org/10.1039/C8RA03623C

    Article  Google Scholar 

  60. Murthy H, Desalegn T, Kassa M, Abebe B, Assefa T (2020) Synthesis of green copper nanoparticles using medicinal plant hagenia abyssinica (Brace) JF. Gmel. leaf extract: Antimicrobial properties. J Nanomater 2020. https://doi.org/10.1155/2020/3924081

  61. George A, Raj DMA, Raj AD, Irudayaraj AA, Arumugam J, Prabu HJ, Sundaram SJ, Al-Dhabi NA, Arasu MV, Maaza M (2020) Temperature effect on CuO nanoparticles: antimicrobial activity towards bacterial strains. Surf Interfaces 21:100761. https://doi.org/10.1016/j.surfin.2020.100761

    Article  Google Scholar 

  62. Sarigul N, Korkmaz F, Kurultak İ (2019) A new artificial urine protocol to better imitate human urine. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-56693-4

    Article  Google Scholar 

  63. Shammout M, Awwad A (2021) A novel route for the synthesis of copper oxide nanoparticles using Bougainvillea plant flowers extract and antifungal activity evaluation. Chem Int 7:71–78. https://doi.org/10.5281/zenodo.4042902

    Article  Google Scholar 

  64. Vanathi P, Rajiv P, Sivaraj R (2016) Synthesis and characterization of Eichhornia-mediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens. Bull Mater Sci 39:1165–1170. https://doi.org/10.1007/s12034-016-1276-x

    Article  Google Scholar 

  65. Ahmad H, Venugopal K, Bhat A, Kavitha K, Ramanan A, Rajagopal K, Srinivasan R, Manikandan E (2020) Enhanced biosynthesis synthesis of copper oxide nanoparticles (CuO-NPs) for their antifungal activity toxicity against major phyto-pathogens of apple orchards. Pharm Res 37:1–12. https://doi.org/10.1007/s11095-020-02966-x

    Article  Google Scholar 

  66. Asghar MA, Asghar MA (2020) Green synthesized and characterized copper nanoparticles using various new plants extracts aggravate microbial cell membrane damage after interaction with lipopolysaccharide. Int J Biol Macromol 160:1168–1176. https://doi.org/10.1016/j.ijbiomac.2020.05.198

    Article  Google Scholar 

  67. Meghana S, Kabra P, Chakraborty S, Padmavathy N (2015) Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv 5:12293–12299. https://doi.org/10.1039/C4RA12163E

    Article  Google Scholar 

  68. Velsankar K, Vinothini V, Sudhahar S, Kumar MK, Mohandoss S (2020) Green Synthesis of CuO nanoparticles via Plectranthus amboinicus leaves extract with its characterization on structural, morphological, and biological properties. Appl Nanosci 10:3953–3971. https://doi.org/10.1007/s13204-020-01504-w

    Article  Google Scholar 

Download references

Data availability

Data will be made available on request.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Harshal Dabhane and Dhanraj Bahiram: data curation, writing—original draft. Manohar Zate: data curation, writing—original draft. Sagar Kute: data curation. Kun-Yi Andrew Lin and Abbas Rahdar: data curation, visualization, investigation. Suresh Ghotekar: data curation, visualization, investigation, writing—original draft. Balasubramani Ravindran and Deepali Sali: writing—review and editing. Chetan Ingale and Bhushan Khairnar: data curation, writing—original draft. Ghanshyam Jadhav and Vijay Medhane: data curation, writing—original draft.

Corresponding author

Correspondence to Suresh Ghotekar.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabhane, H., Ghotekar, S., Zate, M. et al. A novel approach toward the bio-inspired synthesis of CuO nanoparticles for phenol degradation and antimicrobial applications. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-03954-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-03954-y

Keywords

Navigation