Skip to main content

Advertisement

Log in

Valorization of sewage sludge for methylene blue removal from aqueous solution

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this research, we look into the use of dried sewage sludge biomass in its crude form generated from a municipal wastewater treatment plant localized in Mascara (West of Algeria) when it comes to the elimination of methylene blue (MB) from artificial wastewater aqueous solutions in batch process. Moreover, the sewage sludge biomass was characterized by different techniques such as Fourier transform infrared (FTIR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and thermal gravimetric analysis (TGA). In order to optimize the removal of methylene blue (MB) by the present adsorbent, various parameters were explored, including pH effect, initial methylene blue (MB) concentration, adsorbent dose, temperature, and contact time.The results revealed the presence of abundant functional groups (–COOH) responsible for methylene blue (MB) adsorption by electrostatic attraction, optimal pH = 5, and optimal sewage sludge biomass concentration of 2 g/l. The maximum measured adsorption capacity of methylene blue on the sewage sludge biomass was about qe = 325 mg/g at 20 min of contact time. Based on the R2, X2, RMSE, Average relative error (ARE) coefficients, the pseudo-second-order kinetic model and Langmuir model describe well the experimental kinetic and equilibrium data. The application of the Weber and Morris model to the kinetic data shows that the overall mass transfer rate was controlled simultaneously by film diffusion and intraparticle or pore diffusion. The value of intra-particle or pore diffusion coefficient was found to be Kp (mg/g min0.5) = 0.112. On the basis of energy used in the adsorption process and estimated value from Temkin model, adsorption is considered to be a physical process. The thermodynamic analysis revealed that the adsorption mechanism was spontaneous and endothermic, as reflected by the ΔG° and ΔH° values obtained.

Hence, the proposed sewage sludge biomass can be used as a low-cost adsorbent to remove methylene blue (MB) from a variety of polluted water samples, and it can also be used to remove other cationic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Dubis B, Jankowski KJ, Załuski D, Sokólski M (2020) The effect of sewage sludge fertilization on the biomass yield of giant miscanthus and the energy balance of the production process. Energy 206. https://doi.org/10.1016/j.energy.2020.118189

  2. Werle S, Dudziak M (2014) Gaseous fuels production from dried sewage sludge via air gasification. Waste Manag Res 32:601–607. https://doi.org/10.1177/0734242X14536460

    Article  CAS  PubMed  Google Scholar 

  3. Werle S, Wilk RK (2010) A review of methods for the thermal utilization of sewage sludge: the Polish perspective. Renew Energy 35:1914–1919. https://doi.org/10.1016/j.renene.2010.01.019

    Article  CAS  Google Scholar 

  4. Cheng G, Sun L, Jiao L et al (2013) Adsorption of methylene blue by residue biochar from copyrolysis of dewatered sewage sludge and pine sawdust. Desalin Water Treat 51:7081–7087. https://doi.org/10.1080/19443994.2013.773265

    Article  CAS  Google Scholar 

  5. Li YH, Chang FM, Huang B et al (2020) Activated carbon preparation from pyrolysis char of sewage sludge and its adsorption performance for organic compounds in sewage. Fuel 266:117053. https://doi.org/10.1016/j.fuel.2020.117053

    Article  CAS  Google Scholar 

  6. Ferrentino R, Ceccato R, Marchetti V, et al (2020) Sewage sludge hydrochar: an option for removal of methylene blue from wastewater. Appl Sci 10. https://doi.org/10.3390/app10103445

  7. Aoulad El hadj Ali Y, DembaN’diaye A, Ahrouch M et al (2022) Dehydrate sewage sludge as an efficient adsorbent for malachite green removal in textile wastewater: experimental and theoretical studies. Chem Africa 5:359–373. https://doi.org/10.1007/s42250-021-00308-x

    Article  CAS  Google Scholar 

  8. Reddy PMK, Verma P, Subrahmanyam C (2016) Bio-waste derived adsorbent material for methylene blue adsorption. J Taiwan Inst Chem Eng 58:500–508. https://doi.org/10.1016/j.jtice.2015.07.006

    Article  CAS  Google Scholar 

  9. Alizadeh M, Ghahramani E, Zarrabi M, Hashemi S (2015) Efficient de-colorization of methylene blue by electro-coagulation method: comparison of iron and aluminum electrode. Iran J Chem Chem Eng 34:39–47

    CAS  Google Scholar 

  10. Li L, Lian Z, Meng X et al (2020) Porous carbon spheres derived from waste ion-exchange resins and research on adsorption of methylene blue. J Environ Eng 146:04020052. https://doi.org/10.1061/(asce)ee.1943-7870.0001718

    Article  CAS  Google Scholar 

  11. Naresh Yadav D, Anand Kishore K, Saroj D (2020) A study on removal of methylene blue dye by photo catalysis integrated with nanofiltration using statistical and experimental approaches. Environ Technol (United Kingdom) 0:1–14. https://doi.org/10.1080/09593330.2020.1720303

    Article  CAS  Google Scholar 

  12. Parakala S, Moulik S, Sridhar S (2019) Effective separation of methylene blue dye from aqueous solutions by integration of micellar enhanced ultrafiltration with vacuum membrane distillation. Chem Eng J 375:122015. https://doi.org/10.1016/j.cej.2019.122015

    Article  CAS  Google Scholar 

  13. Kumar MS, Sonawane SH, Pandit AB (2017) Degradation of methylene blue dye in aqueous solution using hydrodynamic cavitation based hybrid advanced oxidation processes. Chem Eng Process Process Intensif 122:288–295. https://doi.org/10.1016/j.cep.2017.09.009

    Article  CAS  Google Scholar 

  14. Samarghandi MR, Dargahi A, Shabanloo A et al (2020) Electrochemical degradation of methylene blue dye using a graphite doped PbO2 anode: optimization of operational parameters, degradation pathway and improving the biodegradability of textile wastewater. Arab J Chem 13:6847–6864. https://doi.org/10.1016/j.arabjc.2020.06.038

    Article  CAS  Google Scholar 

  15. Ama OM, Arotiba OA (2017) Exfoliated graphite/titanium dioxide for enhanced photoelectrochemical degradation of methylene blue dye under simulated visible light irradiation. J Electroanal Chem 803:157–164. https://doi.org/10.1016/j.jelechem.2017.09.015

    Article  CAS  Google Scholar 

  16. Aljibouri AKH, Wu J, Upreti SR (2015) Continuous ozonation of methylene blue in water. J Water Process Eng 8:142–150. https://doi.org/10.1016/j.jwpe.2015.10.002

    Article  Google Scholar 

  17. Suvith VS, Philip D (2014) Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochim Acta - Part A Mol Biomol Spectrosc 118:526–532. https://doi.org/10.1016/j.saa.2013.09.016

    Article  ADS  CAS  Google Scholar 

  18. Sajjadi S, Khataee A, Kamali M (2017) Sonocatalytic degradation of methylene blue by a novel graphene quantum dots anchored CdSe nanocatalyst. Ultrason Sonochem 39:676–685. https://doi.org/10.1016/j.ultsonch.2017.05.030

    Article  CAS  PubMed  Google Scholar 

  19. Thambidurai S, Gowthaman P, Venkatachalam M, Suresh S (2020) Natural sunlight assisted photocatalytic degradation of methylene blue by spherical zinc oxide nanoparticles prepared by facile chemical co-precipitation method. Optik (Stuttg) 207:163865. https://doi.org/10.1016/j.ijleo.2019.163865

    Article  ADS  CAS  Google Scholar 

  20. García MC, Mora M, Esquivel D et al (2017) Microwave atmospheric pressure plasma jets for wastewater treatment: degradation of methylene blue as a model dye. Chemosphere 180:239–246. https://doi.org/10.1016/j.chemosphere.2017.03.126

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Yahiaoui I, Aissani-Benissad F, Madi K et al (2013) Electrochemical pre-treatment combined with biological treatment for the degradation of methylene blue dye: Pb/pbo2 electrode and modeling-optimization through central composite design. Ind Eng Chem Res 52:14743–14751. https://doi.org/10.1021/ie401367q

    Article  CAS  Google Scholar 

  22. Hama Aziz KH, Mahyar A, Miessner H et al (2018) Application of a planar falling film reactor for decomposition and mineralization of methylene blue in the aqueous media via ozonation, Fenton, photocatalysis and non-thermal plasma: a comparative study. Process Saf Environ Prot 113:319–329. https://doi.org/10.1016/j.psep.2017.11.005

    Article  CAS  Google Scholar 

  23. Kyzas GZ, Kostoglou M (2014) Green adsorbents for wastewaters: a critical review. Materials (Basel) 7:333–364. https://doi.org/10.3390/ma7010333

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Vadivelan V, Vasanth Kumar K (2005) Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J Colloid Interface Sci 286:90–100. https://doi.org/10.1016/j.jcis.2005.01.007

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Zhi S, Tian L, Li N, Zhang K (2018) A novel system of MnO2-mullite-cordierite composite particle with NaClO for methylene blue decolorization. J Environ Manage 213:392–399. https://doi.org/10.1016/j.jenvman.2018.02.082

    Article  CAS  PubMed  Google Scholar 

  26. Sen TK, Afroze S, Ang HM (2011) Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water Air Soil Pollut 218:499–515. https://doi.org/10.1007/s11270-010-0663-y

    Article  ADS  CAS  Google Scholar 

  27. El Hadj A, Ali Y, Ahrouch M, Ait Lahcen A et al (2021) Dried sewage sludge as an efficient adsorbent for pollutants: cationic methylene blue removal case study. Nanotechnol Environ Eng 6:1–13. https://doi.org/10.1007/s41204-021-00111-6

    Article  CAS  Google Scholar 

  28. Yu Z, Gao Q, Zhang Y et al (2019) Production of activated carbon from sludge and herb residue of traditional Chinese medicine industry and its application for methylene blue removal. BioResources 14:1333–1346. https://doi.org/10.15376/biores.14.1.1333-1346

    Article  CAS  Google Scholar 

  29. Aghdasinia H, Asiabi HR (2018) Adsorption of a cationic dye (methylene blue) by Iranian natural clays from aqueous solutions: equilibrium, kinetic and thermodynamic study. Environ Earth Sci 77. https://doi.org/10.1007/s12665-018-7342-5

  30. Sriramoju SK, Dash PS, Majumdar S (2021) Meso-porous activated carbon from lignite waste and its application in methylene blue adsorption and coke plant effluent treatment. J Environ Chem Eng 9:104784. https://doi.org/10.1016/j.jece.2020.104784

    Article  CAS  Google Scholar 

  31. Medhat A, El-Maghrabi HH, Abdelghany A et al (2021) Efficiently activated carbons from corn cob for methylene blue adsorption. Appl Surf Sci Adv 3:100037. https://doi.org/10.1016/j.apsadv.2020.100037

    Article  Google Scholar 

  32. Selatnia A, Bakhti MZ, Madani A et al (2004) Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy 75:11–24. https://doi.org/10.1016/j.hydromet.2004.06.005

    Article  CAS  Google Scholar 

  33. Selatnia A, Boukazoula A, Kechid N et al (2004) Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochem Eng J 19:127–135. https://doi.org/10.1016/j.bej.2003.12.007

    Article  CAS  Google Scholar 

  34. Blanes PS, Bordoni ME, González JC et al (2016) Application of soy hull biomass in removal of Cr(VI) from contaminated waters. Kinetic, thermodynamic and continuous sorption studies. J Environ Chem Eng 4:516–526. https://doi.org/10.1016/j.jece.2015.12.008

    Article  CAS  Google Scholar 

  35. Gorgievski M, Božić D, Stanković V et al (2013) Kinetics, equilibrium and mechanism of Cu2+, Ni2+ and Zn2+ ions biosorption using wheat straw. Ecol Eng 58:113–122. https://doi.org/10.1016/j.ecoleng.2013.06.025

    Article  Google Scholar 

  36. Gherbia A, Chergui A, Yeddou AR et al (2019) Removal of methylene blue using activated carbon prepared from date stones activated with NaOH. Glob Nest J 21:374–380. https://doi.org/10.30955/gnj.002913

    Article  CAS  Google Scholar 

  37. Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124. https://doi.org/10.1016/S1385-8947(98)00076-X

    Article  CAS  Google Scholar 

  38. Aravindhan R, Rao JR, Nair BU (2009) Application of a chemically modified green macro alga as a biosorbent for phenol removal. J Environ Manage 90:1877–1883. https://doi.org/10.1016/j.jenvman.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  39. Silva F, Nascimento L, Brito M, et al (2019) Biosorption of methylene blue dye using natural biosorbents made from weeds. Materials (Basel) 12. https://doi.org/10.3390/ma12152486

  40. Pathania D, Sharma S, Singh P (2017) Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab J Chem 10:S1445–S1451. https://doi.org/10.1016/j.arabjc.2013.04.021

    Article  CAS  Google Scholar 

  41. Lach J, Ociepa-Kubicka A, Mrowiec M (2021) Oxytetracycline adsorption from aqueous solutions on commercial and high-temperature modified activated carbons. Energies 14:1–23. https://doi.org/10.3390/en14123481

    Article  CAS  Google Scholar 

  42. Imamura K, Ikeda E, Nagayasu T et al (2002) Adsorption behavior of methylene blue and its congeners on a stainless steel surface. J Colloid Interface Sci 245:50–57. https://doi.org/10.1006/jcis.2001.7967

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Yu L, Zhong Q (2006) Preparation of adsorbents made from sewage sludges for adsorption of organic materials from wastewater. J Hazard Mater 137:359–366. https://doi.org/10.1016/j.jhazmat.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  44. Romanovskii VI, Martsul VN (2009) Distribution of heteroatoms of synthetic ion exchangers in pyrolysis products. Russ J Appl Chem 82:836–839. https://doi.org/10.1134/S1070427209050164

    Article  CAS  Google Scholar 

  45. Zaker A, Chen Z, Wang X, Zhang Q (2019) Microwave-assisted pyrolysis of sewage sludge: a review. Fuel Process Technol 187:84–104. https://doi.org/10.1016/j.fuproc.2018.12.011

    Article  CAS  Google Scholar 

  46. Yuvaraja G, Prasad C, Vijaya Y, Subbaiah MV (2018) Application of ZnO nanorods as an adsorbent material for the removal of As(III) from aqueous solution: kinetics, isotherms and thermodynamic studies. Int J Ind Chem 9:17–25. https://doi.org/10.1007/s40090-018-0136-5

    Article  CAS  Google Scholar 

  47. Hadi P, Xu M, Ning C et al (2015) A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment. Chem Eng J 260:895–906. https://doi.org/10.1016/j.cej.2014.08.088

    Article  CAS  Google Scholar 

  48. Wever DAZ, Heeres HJ, Broekhuis AA (2012) Characterization of Physic nut (Jatropha curcas L.) shells. Biomass Bioenerg 37:177–187. https://doi.org/10.1016/j.biombioe.2011.12.014

    Article  CAS  Google Scholar 

  49. Guo J, Lua AC (2002) Textural and chemical characterizations of adsorbent prepared from palm shell by potassium hydroxide impregnation at different stages. J Colloid Interface Sci 254:227–233. https://doi.org/10.1006/jcis.2002.8587

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Hamad BK, Noor AM, Afida AR, Mohd Asri MN (2010) High removal of 4-chloroguaiacol by high surface area of oil palm shell-activated carbon activated with NaOH from aqueous solution. Desalination 257:1–7. https://doi.org/10.1016/j.desal.2010.03.007

    Article  CAS  Google Scholar 

  51. Zhu HY, Fu YQ, Jiang R et al (2011) Adsorption removal of congo red onto magnetic cellulose/Fe3O4/activated carbon composite: equilibrium, kinetic and thermodynamic studies. Chem Eng J 173:494–502. https://doi.org/10.1016/j.cej.2011.08.020

    Article  CAS  Google Scholar 

  52. Wu Z, Zhong H, Yuan X et al (2014) Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater. Water Res 67:330–344. https://doi.org/10.1016/j.watres.2014.09.026

    Article  CAS  PubMed  Google Scholar 

  53. Li Y, Du Q, Liu T et al (2013) Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohydr Polym 95:501–507. https://doi.org/10.1016/j.carbpol.2013.01.094

    Article  CAS  PubMed  Google Scholar 

  54. Daneshvar E, Kousha M, Sohrabi MS et al (2012) Biosorption of three acid dyes by the brown macroalga Stoechospermum marginatum: isotherm, kinetic and thermodynamic studies. Chem Eng J 195–196:297–306. https://doi.org/10.1016/j.cej.2012.04.074

    Article  CAS  Google Scholar 

  55. Gupta VK, Rastogi A, Nayak A (2010) Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. J Colloid Interface Sci 342:533–539. https://doi.org/10.1016/j.jcis.2009.10.074

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Sawasdee S, Jankerd H, Watcharabundit P (2017) Adsorption of dyestuff in household-scale dyeing onto rice husk. Energy Procedia 138:1159–1164. https://doi.org/10.1016/j.egypro.2017.10.225

    Article  CAS  Google Scholar 

  57. Sun Q, Yang L (2003) The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Res 37:1535–1544. https://doi.org/10.1016/S0043-1354(02)00520-1

    Article  CAS  PubMed  Google Scholar 

  58. Hachi M, Chergui A, Selatnia A, Cabana H (2016) Valorization of the spent biomass of Pleurotus mutilus immobilized as calcium alginate biobeads for methylene blue biosorption. Environ Process 3:413–430. https://doi.org/10.1007/s40710-016-0157-z

    Article  Google Scholar 

  59. Aksu Z, Ertuǧrul S, Dönmez G (2010) Methylene blue biosorption by Rhizopus arrhizus: effect of SDS (sodium dodecylsulfate) surfactant on biosorption properties. Chem Eng J 158:474–481. https://doi.org/10.1016/j.cej.2010.01.029

    Article  CAS  Google Scholar 

  60. Ayla A, Çavuş A, Bulut Y et al (2013) Removal of methylene blue from aqueous solutions onto Bacillus subtilis: determination of kinetic and equilibrium parameters. Desalin Water Treat 51:7596–7603. https://doi.org/10.1080/19443994.2013.791780

    Article  CAS  Google Scholar 

  61. Chen T, Yan B, Xu DM, Li LL (2018) Enhanced adsorption performance of methylene blue from aqueous solutions onto modified adsorbents prepared from sewage sludge. Water Sci Technol 78:803–813. https://doi.org/10.2166/wst.2018.351

    Article  CAS  PubMed  Google Scholar 

  62. Huff MD, Marshall S, Saeed HA, Lee JW (2018) Surface oxygenation of biochar through ozonization for dramatically enhancing cation exchange capacity. Bioresour Bioprocess 5. https://doi.org/10.1186/s40643-018-0205-9

  63. Daou I, Zegaoui O, Chfaira R et al (2015) Physico-chemical characterization and kinetic study of methylene blue adsorption onto a Moroccan Bentonite. Int J Sci Res Publ 5(5)

  64. Guo T, Yao S, Chen H et al (2017) Characteristics and adsorption study of the activated carbon derived from municipal sewage sludge. Water Sci Technol 76:1697–1705. https://doi.org/10.2166/wst.2017.352

    Article  CAS  PubMed  Google Scholar 

  65. Dural MU, Cavas L, Papageorgiou SK, Katsaros FK (2011) Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: kinetics and equilibrium studies. Chem Eng J 168:77–85. https://doi.org/10.1016/j.cej.2010.12.038

    Article  CAS  Google Scholar 

  66. Foo KY, Hameed BH (2011) Preparation of activated carbon from date stones by microwave induced chemical activation: application for methylene blue adsorptionf. Chem Eng J 170:338–341. https://doi.org/10.1016/j.cej.2011.02.068

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.Y.S.: Conceived the idea, accomplishment of experimental tests, designed the manuscript, and wrote the manuscript. A.S.: Designed the manuscript, execution of statistical calculations, and figure interpretation. A.A.: Designed the manuscript, plagiarism test, and English corrections. A.E.B.T.: Contributed in the conclusion. A.B.: Contributed in the introduction. R.A.: Contributed in the figure interpretation. The paper has been read and approved by all authors.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Changes to authorship

We declare that the Author List in the Metadata and in the main manuscript text file is identical and in the same order. Also, there is no changes of authorship before or after acceptance.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahnoun, A.Y., Selatnia, A., Alouache, A. et al. Valorization of sewage sludge for methylene blue removal from aqueous solution. Biomass Conv. Bioref. 14, 8775–8791 (2024). https://doi.org/10.1007/s13399-022-03012-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03012-z

Keywords

Navigation