Skip to main content
Log in

A comparative study on the adsorption of toxic cationic dyes by Judas tree (Cercis siliquastrum) seeds

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Cercis siliquastrum seeds were used for the adsorption of the basic dyes namely basic blue 9 and basic green 4 from the wastewater. Adsorption experiments were conducted under various conditions including different temperatures (25, 35, and 45 °C), pH (2–12), contact time (0–180 min), adsorbent amount (0.2–4.0 g/L), and concentration (10–50 mg/L). The adsorption processes were applied to various isotherms such as Freundlich, Langmuir, Dubinin-Radushkevich, and Harkins–Jura. Furthermore, different adsorption kinetic models including pseudo-first-order, pseudo-second-order, Boyd, and intraparticle diffusion were studied to comprehend the mechanism of the adsorption of the dyes. The results illustrated that the adsorption was best described by the Langmuir (r2 = 0.9949 for basic blue 9 dye and r2 = 0.9939 for basic green 4 dye at 25 °C). From the Langmuir isotherm, the qm value of basic blue 9 was found as 500.0 mg/g whereas those of basic green 4 was found as 243.9 mg/g at 25 °C. According to the thermodynamic parameters, it was determined that the adsorption process occurred endothermically and spontaneously for basic blue 9 and basic green 4 dyes. Considering the capacity of adsorption for both dyes, this study suggests that Cercis siliquastrum seeds are low-cost and environmentally friendly materials for the effective adsorption of basic dyes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8

Similar content being viewed by others

References

  1. Kubra KT, Salman S, Hasan N (2021) Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. J Mol Liq 328:115468. https://doi.org/10.1016/j.molliq.2021.115468

    Article  CAS  Google Scholar 

  2. Panda SK, Aggarwal I, Kumar H, Prasad L, Kumar A, Sharma A, Vo DVN, Thuan DV, Mishra V (2021) Magnetite nanoparticles as sorbents for dye removal: a review. Environ Chem Lett 19:2487–2525. https://doi.org/10.1007/s10311-020-01173-9

    Article  CAS  Google Scholar 

  3. Thamer BM, Aldalbahi A, Moydeen M, Rahaman M, El-Newehy MH (2020) Modified electrospun polymeric nanofibers and their nanocomposites as nanoadsorbents for toxic dye removal from contaminated waters: a review. Polymers (Basel) 13:20. https://doi.org/10.3390/polym13010020

    Article  CAS  PubMed  Google Scholar 

  4. Mcyotto F, Wei Q, Macharia DK, Huang M, Shen C, Chow CWK (2021) Effect of dye structure on color removal efficiency by coagulation. Chem Eng J 405:126674. https://doi.org/10.1016/j.cej.2020.126674

    Article  CAS  Google Scholar 

  5. Saharan P, Kumar V, Mittal J, Sharma V, Sharma AK (2021) Efficient ultrasonic assisted adsorption of organic pollutants employing bimetallic-carbon nanocomposites. Sep Sci Technol 56:2895–2908. https://doi.org/10.1080/01496395.2020.1866608

    Article  CAS  Google Scholar 

  6. Mariyam A, Mittal J, Sakina F, Baker RT, Sharma AK (2021) Adsorption behaviour of Chrysoidine R dye on a metal/halide-free variant of ordered mesoporous carbon. Desalin Water Treat 223:425–433. https://doi.org/10.5004/dwt.2021.27147

    Article  CAS  Google Scholar 

  7. Yadav A, Bagotia N, Yadav S, Sharma AK, Kumar S (2021) Adsorptive studies on the removal of dyes from single and binary systems using Saccharum munja plant-based novel functionalized CNT composites. Environ Technol Innov 24:102015. https://doi.org/10.1016/j.eti.2021.102015

    Article  CAS  Google Scholar 

  8. Mahmud HNME, Kamal SJ, Mohamad N, Sharma AK, Saharan P, Santos JH, Zakaria SNA (2021) Nanoconducting polymer: an effective adsorbent for dyes. Chem Pap 75:5173–5185. https://doi.org/10.1007/s11696-021-01665-0

    Article  CAS  Google Scholar 

  9. Kumar V, Saharan P, Sharma AK, Umar A, Kaushal I, Mittal A, Al-Hadeethi Y, Rashad B (2020) Silver doped manganese oxide-carbon nanotube nanocomposite for enhanced dye-sequestration: isotherm studies and RSM modelling approach. Ceram Int 46:10309–10319. https://doi.org/10.1016/j.ceramint.2020.01.025

    Article  CAS  Google Scholar 

  10. Dutta S, Gupta B, Srivastava SK, Gupta AK (2021) Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Mater Adv 2:4497–4531. https://doi.org/10.1039/D1MA00354B

    Article  CAS  Google Scholar 

  11. Altun EY, Sismanoglu ZT, Pozan Soylu GS (2021) Photocatalytic decomposition of textile dyestuffs by photosensitive metal oxide catalysts. Turk J Chem 45:1432–1443. https://doi.org/10.3906/kim-2104-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Duran H, Sismanoglu S, Sismanoglu T (2019) Binary biomaterials (inorganic material/natural resin): synthesis, characterization and performance for adsorption of dyes. J Ind Chem Soc 96:1245–1251

    CAS  Google Scholar 

  13. Jawad AH, Saud Abdulhameed A, Wilson LD, Syed-Hassan SSA, ALOthman ZA, Khan MR (2021) High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: optimization and mechanism study. Chin J Chem Eng 32:281–290. https://doi.org/10.1016/j.cjche.2020.09.070

    Article  CAS  Google Scholar 

  14. Kaushal I, Saharan P, Kumar V, Sharma AK, Umar A (2019) Superb sono-adsorption and energy storage potential of multifunctional Ag-biochar composite. J Alloys Compd 785:240–249. https://doi.org/10.1016/j.jallcom.2019.01.064

    Article  CAS  Google Scholar 

  15. Karakus S, Sismanoglu S, Akdut G, Urk O, Tan E, Sismanoglu T, Kilislioglu A (2017) Removal of basic blue 3 from the aqueous solution with ternary polymer nanocomposite: swelling, kinetics, isotherms and error function. J Chem Soc Pak 39:17–25

    CAS  Google Scholar 

  16. Mariyam A, Mittal J, Sakina F, Baker RT, Sharma AK, Mittal A (2021) Efficient batch and fixed-bed sequestration of a basic dye using a novel variant of ordered mesoporous carbon as adsorbent. Arab J Chem 14:103186. https://doi.org/10.1016/j.arabjc.2021.103186

    Article  CAS  Google Scholar 

  17. Yadav A, Bagotia N, Sharma AK, Kumar S (2021) Simultaneous adsorptive removal of conventional and emerging contaminants in multi-component systems for wastewater remediation: a critical review. Sci Total Environ 799:149500. https://doi.org/10.1016/j.scitotenv.2021.149500

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Zhao J, Xu L, Su Y, Yu H, Liu H, Qian S, Zheng W, Zhao Y (2021) Zr-MOFs loaded on polyurethane foam by polydopamine for enhanced dye adsorption. J Environ Sci 101:177–188. https://doi.org/10.1016/j.jes.2020.08.021

    Article  CAS  Google Scholar 

  19. Ighalo JO, Adeniyi AG (2020) Adsorption of pollutants by plant bark derived adsorbents: an empirical review. J Water Process Eng 35:101228. https://doi.org/10.1016/j.jwpe.2020.101228

    Article  Google Scholar 

  20. Jain CK, Malik DS, Yadav AK (2016) Applicability of plant based biosorbents in the removal of heavy metals: a review. Environ Proces 3:495–523. https://doi.org/10.1007/s40710-016-0143-5

    Article  Google Scholar 

  21. Yadav S, Yadav A, Bagotia N, Sharma AK, Kumar S (2021) Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater —a review. J Water Process Eng 42:102148. https://doi.org/10.1016/j.jwpe.2021.102148

    Article  Google Scholar 

  22. Amer J, Jaradat N, Hattab S, Al-hihi S, Juma’a R (2019) Traditional palestinian medicinal plant Cercis siliquastrum (Judas tree) inhibits the DNA cell cycle of breast cancer – antimicrobial and antioxidant characteristics. Eur J Integr Med 27:90–96. https://doi.org/10.1016/j.eujim.2019.03.005

    Article  Google Scholar 

  23. Pipinis E, Milios E, Smiris P, Gioumousidis C (2011) Effect of acid scarification and cold moist stratification on the germination of Cercis siliquastrum L. seeds. Turk J Agric Forest 35:259–264

    Google Scholar 

  24. Dayeni M, Omidbaigi R (2006) Essential oil content and constituents of Cercis siliquastrum L. growing in Iran. J Essent Oil-Bear Plants 9:140–143. https://doi.org/10.1080/0972060X.2006.10643485

    Article  CAS  Google Scholar 

  25. Choudhary M, Kumar R, Neogi S (2020) Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. J Hazard Mater 392:122441. https://doi.org/10.1016/j.jhazmat.2020.122441

    Article  CAS  PubMed  Google Scholar 

  26. Mobarak M, Mohamed EA, Selim AQ, Eissa MF, Seliem MK (2019) Experimental results and theoretical statistical modeling of malachite green adsorption onto MCM–41 silica/rice husk composite modified by beta radiation. J Mol Liq 273:68–82. https://doi.org/10.1016/j.molliq.2018.09.132

    Article  CAS  Google Scholar 

  27. Mobarak M, Selim AQ, Mohamed EA, Seliem MK (2018) A superior adsorbent of CTAB/H2O2 solution−modified organic carbon rich-clay for hexavalent chromium and methyl orange uptake from solutions. J Mol Liq 259:384–397. https://doi.org/10.1016/j.molliq.2018.02.014

    Article  CAS  Google Scholar 

  28. Isik B, Ugraskan V, Cankurtaran O (2022) Effective biosorption of methylene blue dye from aqueous solution using wild macrofungus (Lactarius piperatus). Sep Sci Technol 57:854–871. https://doi.org/10.1080/01496395.2021.1956540

    Article  CAS  Google Scholar 

  29. Amini M, Younesi H, Bahramifar N (2013) Biosorption of U(VI) from aqueous solution by Chlorella vulgaris: equilibrium, kinetic, and thermodynamic studies. J Environ Eng 139:410–421. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000651

    Article  CAS  Google Scholar 

  30. Erdogan Y, Isik B, Ugraskan V, Cakar F (2022) Effective and fast removal of crystal violet dye from aqueous solutions using Rumex acetosella: isotherm, kinetic, thermodynamic studies, and statistical analysis. Biomass Convers Bioref. https://doi.org/10.1007/s13399-022-02349-9

    Article  Google Scholar 

  31. Savva I, Marinica O, Papatryfonos CA, Vekas L, Krasia-Christoforou T (2015) Evaluation of electrospun polymer–Fe3O4 nanocomposite mats in malachite green adsorption. RSC Adv 5:16484–16496. https://doi.org/10.1039/C4RA16938G

    Article  CAS  ADS  Google Scholar 

  32. Gao M, Wang Z, Yang C, Ning J, Zhou Z, Li G (2019) Novel magnetic graphene oxide decorated with persimmon tannins for efficient adsorption of malachite green from aqueous solutions. Colloid Surf A Physicochem Eng Asp 566:48–57. https://doi.org/10.1016/j.colsurfa.2019.01.016

    Article  CAS  Google Scholar 

  33. Ugraskan V, Isik B, Yazici O, Cakar F (2022) Removal of Safranine T by a highly efficient adsorbent (Cotinus Coggygria leaves): isotherms, kinetics, thermodynamics, and surface properties. Surf Interf 28:101615. https://doi.org/10.1016/j.surfin.2021.101615

    Article  CAS  Google Scholar 

  34. Abu Elella MH, Goda ES, Gamal H, El-Bahy SM, Nour MA, Yoon KR (2021) Green antimicrobial adsorbent containing grafted xanthan gum/SiO2 nanocomposites for malachite green dye. Int J Biol Macromol 191:385–395. https://doi.org/10.1016/j.ijbiomac.2021.09.040

    Article  CAS  PubMed  Google Scholar 

  35. Naseeruteen F, Hamid NSA, Suah FBM, Ngah WSW, Mehamod FS (2018) Adsorption of malachite green from aqueous solution by using novel chitosan ionic liquid beads. Int J Biol Macromol 107:1270–1277. https://doi.org/10.1016/j.ijbiomac.2017.09.111

    Article  CAS  PubMed  Google Scholar 

  36. Sadiq AC, Rahim NY, Suah FBM (2020) Adsorption and desorption of malachite green by using chitosan-deep eutectic solvents beads. Int J Biol Macromol 164:3965–3973. https://doi.org/10.1016/j.ijbiomac.2020.09.029

    Article  CAS  PubMed  Google Scholar 

  37. Kumar KY, Muralidhara HB, Nayaka YA, Balasubramanyam J, Hanumanthappa H (2013) Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technol 246:125–136. https://doi.org/10.1016/j.powtec.2013.05.017

    Article  CAS  Google Scholar 

  38. Zhang X, Lin Q, Luo S, Ruan K, Peng K (2018) Preparation of novel oxidized mesoporous carbon with excellent adsorption performance for removal of malachite green and lead ion. Appl Surf Sci 442:322–331. https://doi.org/10.1016/j.apsusc.2018.02.148

    Article  CAS  ADS  Google Scholar 

  39. Pan X, Zuo G, Su T, Cheng S, Gu Y, Qi X, Dong W (2019) Polycarboxylic magnetic polydopamine sub-microspheres for effective adsorption of malachite green. Colloid Surf A Physicochem Eng Asp 560:106–113. https://doi.org/10.1016/j.colsurfa.2018.10.014

    Article  CAS  Google Scholar 

  40. Gulen J, Aslan S (2020) Adsorption of 2,4-dichlorophenoxyacetic acid from aqueous solution using carbonized chest nut as low cost adsorbent: kinetic and thermodynamic. Z Phys Chem 234:461–484. https://doi.org/10.1515/zpch-2019-0004

    Article  CAS  Google Scholar 

  41. Sismanoglu T, Aroguz AZ (2015) Adsorption kinetics of diazo-dye from aqueous solutions by using natural origin low-cost biosorbents. Desalin Water Treat 54:736–743. https://doi.org/10.1080/19443994.2014.887039

    Article  CAS  Google Scholar 

  42. Mittal H, Morajkar PP, al Alili A, Alhassan SM (2020) In-situ synthesis of ZnO nanoparticles using gum arabic based hydrogels as a self-template for effective malachite green dye adsorption. J Polym Environ 28:1637–1653. https://doi.org/10.1007/s10924-020-01713-y

    Article  CAS  Google Scholar 

  43. Ali H, Ismail AM (2021) Developing montmorillonite/PVDF/PEO microporous membranes for removal of malachite green: adsorption, isotherms, and kinetics. J Polym Res 28:429. https://doi.org/10.1007/s10965-021-02789-3

    Article  CAS  Google Scholar 

  44. Giles CH, MacEwan TH, Nakhwa SN, Smith D (1960) 786. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J Chem Soc (Resumed). https://doi.org/10.1039/jr9600003973

    Article  Google Scholar 

  45. Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  46. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  47. Dubinin M, Raduchkevich L (1947) The equation of the characteristic curve of the activated charcoal. Proc Acad Sci USSR Phys Chem Sect 55:331–337

    Google Scholar 

  48. Harkins W, Jura E (1944) The decrease of free surface energy as a basis for the development of equations of adsorption isotherms, and the existence of two condensed phases in films on solids. J Phys Chem 12:112–113

    Article  CAS  Google Scholar 

  49. Hijab M, Parthasarathy P, Mackey HR, Al-Ansari T, McKay G (2021) Minimizing adsorbent requirements using multi-stage batch adsorption for malachite green removal using microwave date-stone activated carbons. Chem Eng Proces Process Intens 167:108318. https://doi.org/10.1016/j.cep.2021.108318

    Article  CAS  Google Scholar 

  50. Guo F, Jiang X, Li X, Jia X, Liang S, Qian L (2020) Synthesis of MgO/Fe3O4 nanoparticles embedded activated carbon from biomass for high-efficient adsorption of malachite green. Mater Chem Phys 240:122240. https://doi.org/10.1016/j.matchemphys.2019.122240

    Article  CAS  Google Scholar 

  51. Duran H, Yavuz E, Sismanoglu T, Senkal BF (2019) Functionalization of gum arabic including glycoprotein and polysaccharides for the removal of boron. Carbohydr Polym 225:115139. https://doi.org/10.1016/j.carbpol.2019.115139

    Article  CAS  PubMed  Google Scholar 

  52. Isik B, Kurtoglu AE, Gurdag G, Keceli G (2021) Radioactive cesium ion removal from wastewater using polymer metal oxide composites. J Hazard Mater 403:123652. https://doi.org/10.1016/j.jhazmat.2020.123652

    Article  CAS  PubMed  Google Scholar 

  53. Alimohammadi Z, Younesi H, Bahramifar N (2016) Batch and column adsorption of reactive red 198 from textile industry effluent by microporous activated carbon developed from walnut shells. Waste Biomass Valor 7:1255–1270. https://doi.org/10.1007/s12649-016-9506-4

    Article  CAS  Google Scholar 

  54. Pathania D, Sharma S, Singh P (2017) Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab J Chem 10:S1445–S1451. https://doi.org/10.1016/j.arabjc.2013.04.021

    Article  CAS  Google Scholar 

  55. Krishna Murthy TP, Gowrishankar BS, Chandra Prabha MN, Kruthi M, Krishna RH (2019) Studies on batch adsorptive removal of malachite green from synthetic wastewater using acid treated coffee husk: equilibrium, kinetics and thermodynamic studies. Microchem J 146:192–201. https://doi.org/10.1016/j.microc.2018.12.067

    Article  CAS  Google Scholar 

  56. Safa F, Alinezhad Y (2020) Ternary nanocomposite of SiO2/Fe3O4/multi-walled carbon nanotubes for efficient adsorption of malachite green: response surface modeling, equilibrium isotherms and kinetics. SILICON 12:1619–1637. https://doi.org/10.1007/s12633-019-00251-0

    Article  CAS  Google Scholar 

  57. Ugraskan V, Isik B, Yazici O (2021) Adsorptive removal of methylene blue from aqueous solutions by porous boron carbide: isotherm, kinetic and thermodynamic studies. Chem Eng Commun. https://doi.org/10.1080/00986445.2021.1948406

    Article  Google Scholar 

  58. Guechi E, Benabdesselam S, Hamdaoui O (2021) Biosorption of methyl violet 2B by chemically treated Okoume sawdust: kinetic, isotherm and thermodynamic studies. Alger J Eng Res 4:34–41

    Google Scholar 

  59. Sismanoglu T, Pozan GS (2016) Adsorption of congo red from aqueous solution using various TiO2 nanoparticles. Desalin Water Treat 57:1–16. https://doi.org/10.1080/19443994.2015.1056834

    Article  CAS  Google Scholar 

  60. Gulen J, Zorbay F (2017) Methylene blue adsorption on a low cost adsorbent—carbonized peanut shell. Water Environ Res 89:805–816. https://doi.org/10.2175/106143017X14902968254836

    Article  CAS  PubMed  Google Scholar 

  61. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kongl Vetensk Acad Handl 24:1–39

    Google Scholar 

  62. Ho YS, McKay G (1997) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  Google Scholar 

  63. Boyd GE, Adamson AW, Myers LS (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. II. kinetics1. J Am Chem Soc 69:2836–2848. https://doi.org/10.1021/ja01203a066

    Article  CAS  PubMed  Google Scholar 

  64. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–59. https://doi.org/10.1061/JSEDAI.0000430

    Article  Google Scholar 

  65. Eftekhari M, Gheibi M, Azizi-Toupkanloo H, Hossein-Abadi Z, Khraisheh M, Fathollahi-Fard A, Tian G (2021) Statistical optimization, soft computing prediction, mechanistic and empirical evaluation for fundamental appraisal of copper, lead and malachite green adsorption. J Ind Inf Integr 23:100219. https://doi.org/10.1016/j.jii.2021.100219

    Article  Google Scholar 

  66. Boudechiche N, Fares M, Ouyahia S, Yazid H, Trari M, Sadoui Z (2019) Comparative study on removal of two basic dyes in aqueous medium by adsorption using activated carbon from Ziziphus lotus stones. Microchem J 146:1010–1018. https://doi.org/10.1016/j.microc.2019.02.010

    Article  CAS  Google Scholar 

  67. Ghibate R, Senhaji O, Taouil R (2021) Kinetic and thermodynamic approaches on rhodamine B adsorption onto pomegranate peel. Case Stud Chem Environ Eng 3:100078. https://doi.org/10.1016/j.cscee.2020.100078

    Article  CAS  Google Scholar 

  68. Li Z, Meng X, Zhang Z (2019) Equilibrium and kinetic modelling of adsorption of rhodamine B on MoS2. Mater Res Bull 111:238–244. https://doi.org/10.1016/j.materresbull.2018.11.012

    Article  CAS  Google Scholar 

  69. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048

    Article  CAS  Google Scholar 

  70. Qu W, Yuan T, Yin G, Xu S, Zhang Q, Su H (2019) Effect of properties of activated carbon on malachite green adsorption. Fuel 249:45–53. https://doi.org/10.1016/j.fuel.2019.03.058

    Article  CAS  Google Scholar 

  71. Kavci E (2021) Malachite green adsorption onto modified pine cone: isotherms, kinetics and thermodynamics mechanism. Chem Eng Commun 208:318–327. https://doi.org/10.1080/00986445.2020.1715961

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Yildiz Technical University Scientific Research Projects Coordination Department (Grant Number [FBA-2021–4128]).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Birol Isik, Volkan Ugraskan, Fatih Cakar, Ozlem Yazici; Methodology: Birol Isik, Volkan Ugraskan, Fatih Cakar, Ozlem Yazici; Formal analysis and investigation: Birol Isik, Volkan Ugraskan; Writing—original draft preparation: Birol Isik, Volkan Ugraskan, Fatih Cakar, Ozlem Yazici; Writing—review and editing: Birol Isik, Volkan Ugraskan, Fatih Cakar, Ozlem Yazici; Funding acquisition: Ozlem Yazici; Resources: Birol Isik, Volkan Ugraskan, Fatih Cakar, Ozlem Yazici; Supervision: Ozlem Yazici.

Corresponding author

Correspondence to Ozlem Yazici.

Ethics declarations

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isik, B., Ugraskan, V., Cakar, F. et al. A comparative study on the adsorption of toxic cationic dyes by Judas tree (Cercis siliquastrum) seeds. Biomass Conv. Bioref. 14, 6709–6723 (2024). https://doi.org/10.1007/s13399-022-02679-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02679-8

Keywords

Navigation