Skip to main content

Advertisement

Log in

Batch and Column Adsorption of Reactive Red 198 from Textile Industry Effluent by Microporous Activated Carbon Developed from Walnut Shells

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study, the adsorption potential of walnut shells (WNS) was investigated using batch and fixed-bed column. Activated carbons (ACs) were prepared from WNS as a precursor for by chemical activation with H3PO4 and KOH with different impregnation ratios for removing reactive red 198 from wastewater. The surface characteristics of the prepared ACs were determined by the analysis of N2 adsorption isotherms (BET), ultimate, proximate and elemental analysis, Fourier transform Infrared spectroscopy, scanning electron microscopy, and acid–base Boehm titration. BET measurements showed that AC-H3.5 has the highest BET surface area (1980 m2/g). Batch adsorption studies were performed to evaluate the effect of pH (3–9), adsorbent dosage (0.5–2.5 g/L), and contact time on the adsorption capacity of WNS for the ACs obtained under optimum conditions. The adsorption kinetics followed the pseudo-second-order model. The equilibrium analysis revealed that the adsorption data was successfully fitted with the Langmuir isotherm. The maximum adsorption capacity calculated by Langmuir isotherm was 79.15 mg/g. Also, enthalpy, entropy, and free Gibbs energy changes showed that the reaction was endothermic. The effects of different bed heights, flow rates and the initial concentrations of dye on the breakthrough characteristics in fixed-bed adsorption column were investigated. Moreover, the Thomas, Yan and bed depth service time (BDST) models were used to predict the breakthrough curves of each component. The R 2 of Thomas and Yan model were more than 0.95 and the R 2 of BDST model was more than 0.96, also, the adsorption capacity calculated by both models corresponded with experimental values. Also a decrease in flow rate resulted in an increase in the bed volumes with a higher empty bed residence time at the breakthrough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahmad, A.A., Hameed, B.H.: Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. J. Hazard. Mater. 175, 298–303 (2010). doi:10.1016/j.jhazmat.2009.10.003

    Article  Google Scholar 

  2. Ahmad, M.A., Ahmad Puad, N.A., Bello, O.S.: Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Resour. Ind. 6, 18–35 (2014). doi:10.1016/j.wri.2014.06.002

    Article  Google Scholar 

  3. Ai, L., Zhang, C., Liao, F., Wang, Y., Li, M., Meng, L., Jiang, J.: Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J. Hazard. Mater. 198, 282–290 (2011). doi:10.1016/j.jhazmat.2011.10.041

    Article  Google Scholar 

  4. Al-Degs, Y.S., Khraisheh, M.A.M., Allen, S.J., Ahmad, M.N.: Adsorption characteristics of reactive dyes in columns of activated carbon. J. Hazard. Mater. 165, 944–949 (2009). doi:10.1016/j.jhazmat.2008.10.081

    Article  Google Scholar 

  5. Amin, N.K.: Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith. Desalination 223, 152–161 (2008). doi:10.1016/j.desal.2007.01.203

    Article  Google Scholar 

  6. Amin, N.K.: Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics. J. Hazard. Mater. 165, 52–62 (2009). doi:10.1016/j.jhazmat.2008.09.067

    Article  Google Scholar 

  7. Auta, M., Hameed, B.H.: Preparation of waste tea activated carbon using potassium acetate as an activating agent for adsorption of Acid Blue 25 dye. Chem. Eng. J. 171, 502–509 (2011). doi:10.1016/j.cej.2011.04.017

    Article  Google Scholar 

  8. Bagheri, M., Younesi, H., Hajati, S., Borghei, S.M.: Application of chitosan-citric acid nanoparticles for removal of chromium (VI). Int. J. Biol. Macromol. 80, 431–444 (2015). doi:10.1016/j.ijbiomac.2015.07.022

    Article  Google Scholar 

  9. Bharathi, K.S., Ramesh, S.T.: Removal of dyes using agricultural waste as low-cost adsorbents: a review. Appl. Water Sci. 3, 773–790 (2013). doi:10.1007/s13201-013-0117-y

    Article  Google Scholar 

  10. Boehm, H.P.: Surface oxides on carbon and their analysis: a critical assessment. Carbon 40, 145–149 (2002). doi:10.1016/S0008-6223(01)00165-8

    Article  Google Scholar 

  11. Bohart, G.S., Adams, E.Q.: Some aspects of the behavior of charcoal with respect to chlorine.1. J. Am. Chem. Soc. 42, 523–544 (1920). doi:10.1021/ja01448a018

    Article  Google Scholar 

  12. Cao, J.-S., Lin, J.-X., Fang, F., Zhang, M.-T., Hu, Z.-R.: A new absorbent by modifying walnut shell for the removal of anionic dye: Kinetic and thermodynamic studies. Bioresour. Technol. 163, 199–205 (2014). doi:10.1016/j.biortech.2014.04.046

    Article  Google Scholar 

  13. Çolak, F., Atar, N., Olgun, A.: Biosorption of acidic dyes from aqueous solution by Paenibacillus macerans: kinetic, thermodynamic and equilibrium studies. Chem. Eng. J. 150, 122–130 (2009). doi:10.1016/j.cej.2008.12.010

    Article  Google Scholar 

  14. Crini, G., Badot, P.-M.: Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog. Polym. Sci. 33, 399–447 (2008). doi:10.1016/j.progpolymsci.2007.11.001

    Article  Google Scholar 

  15. Dávila-Jiménez, M.M., Elizalde-González, M.P., Peláez-Cid, A.A.: Adsorption interaction between natural adsorbents and textile dyes in aqueous solution. Colloids Surf. A 254, 107–114 (2005). doi:10.1016/j.colsurfa.2004.11.022

    Article  Google Scholar 

  16. Dizge, N., Aydiner, C., Demirbas, E., Kobya, M., Kara, S.: Adsorption of reactive dyes from aqueous solutions by fly ash: kinetic and equilibrium studies. J. Hazard. Mater. 150, 737–746 (2008). doi:10.1016/j.jhazmat.2007.05.027

    Article  Google Scholar 

  17. El Qada, E.N., Allen, S.J., Walker, G.M.: Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm. Chem. Eng. J. 124, 103–110 (2006). doi:10.1016/j.cej.2006.08.015

    Article  Google Scholar 

  18. Guo, J., Lua, A.C.: Textural and chemical properties of adsorbent prepared from palm shell by phosphoric acid activation. Mater. Chem. Phys. 80, 114–119 (2003). doi:10.1016/S0254-0584(02)00383-8

    Article  Google Scholar 

  19. Hasany, S.M., Saeed, M.M., Ahmed, M.: Sorption and thermodynamic behavior of zinc(II)-thiocyanate complexes onto polyurethane foam from acidic solutions. J. Radioanal. Nucl. Chem. 252, 477–484 (2002). doi:10.1023/A:1015890317697

    Article  Google Scholar 

  20. Heidari, A., Younesi, H., Rashidi, A., Ghoreyshi, A.: Adsorptive removal of CO2 on highly microporous activated carbons prepared from Eucalyptus camaldulensis wood: effect of chemical activation. J. Taiwan Inst. Chem. Eng. 45, 579–588 (2014). doi:10.1016/j.jtice.2013.06.007

    Article  Google Scholar 

  21. Kan, Y., Yue, Q., Kong, J., Gao, B., Li, Q.: The application of activated carbon produced from waste printed circuit boards (PCBs) by H3PO4 and steam activation for the removal of malachite green. Chem. Eng. J. 260, 541–549 (2015). doi:10.1016/j.cej.2014.09.047

    Article  Google Scholar 

  22. Ko, D.C.K., Porter, J.F., McKay, G.: Optimised correlations for the fixed-bed adsorption of metal ions on bone char. Chem. Eng. Sci. 55, 5819–5829 (2000). doi:10.1016/S0009-2509(00)00416-4

    Article  Google Scholar 

  23. Levine, I.N.: Physical Chemistry. McGraw-Hill, Boston (2008)

    Google Scholar 

  24. Lillo-Ródenas, M.A., Cazorla-Amorós, D., Linares-Solano, A.: Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon 43, 1758–1767 (2005). doi:10.1016/j.carbon.2005.02.023

    Article  Google Scholar 

  25. Lua, A.C., Yang, T.: Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. J. Colloid Interface Sci. 274, 594–601 (2004). doi:10.1016/j.jcis.2003.10.001

    Article  Google Scholar 

  26. Malkoc, E., Nuhoglu, Y., Abali, Y.: Cr(VI) adsorption by waste acorn of Quercus ithaburensis in fixed beds: prediction of breakthrough curves. Chem. Eng. J. 119, 61–68 (2006). doi:10.1016/j.cej.2006.01.019

    Article  Google Scholar 

  27. Manoochehri, M., Rattan, V., Khorsand, A., Panahi, H.A.: Capacity of activated carbon derived from agricultural waste in the removal of reactive dyes from aqueous solutions. Carbon Lett. 11, 169–175 (2010)

    Article  Google Scholar 

  28. Marsal, A., Maldonado, F., Cuadros, S., Elena Bautista, M., Manich, A.M.: Adsorption isotherm, thermodynamic and kinetics studies of polyphenols onto tannery shavings. Chem. Eng. J. 183, 21–29 (2012). doi:10.1016/j.cej.2011.12.012

    Article  Google Scholar 

  29. Netpradit, S., Thiravetyan, P., Towprayoon, S.: Adsorption of three azo reactive dyes by metal hydroxide sludge: effect of temperature, pH, and electrolytes. J. Colloid Interface Sci. 270, 255–261 (2004). doi:10.1016/j.jcis.2003.08.073

    Article  Google Scholar 

  30. Nieto-Delgado, C., Terrones, M., Rangel-Mendez, J.R.: Development of highly microporous activated carbon from the alcoholic beverage industry organic by-products. Biomass Bioenergy 35, 103–112 (2011). doi:10.1016/j.biombioe.2010.08.025

    Article  Google Scholar 

  31. Rahim, Y.A., Aqmar, S.N., Dewi, D.R.: ESR study of electron trapped on activated carbon by KOH and ZnCl2 activation. J. Mater. Sci. Eng. 4, 22–26 (2010)

    Google Scholar 

  32. Salleh, M.A.M., Mahmoud, D.K., Karim, W.A.W.A., Idris, A.: Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280, 1–13 (2011)

    Article  Google Scholar 

  33. Santhy, K., Selvapathy, P.: Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon. Bioresour. Technol. 97, 1329–1336 (2006). doi:10.1016/j.biortech.2005.05.016

    Article  Google Scholar 

  34. Senthilkumaar, S., Kalaamani, P., Porkodi, K., Varadarajan, P.R., Subburaam, C.V.: Adsorption of dissolved reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste. Bioresour. Technol. 97, 1618–1625 (2006). doi:10.1016/j.biortech.2005.08.001

    Article  Google Scholar 

  35. Shahbazi, A., Younesi, H., Badiei, A.: Batch and fixed-bed column adsorption of Cu (II), Pb(II) and Cd (II) from aqueous solution onto functionalised SBA-15 mesoporous silica. Can. J. Chem. Eng. 91, 739–750 (2013)

    Article  Google Scholar 

  36. Sulak, M.T., Demirbas, E., Kobya, M.: Removal of Astrazon Yellow 7GL from aqueous solutions by adsorption onto wheat bran. Bioresour. Technol. 98, 2590–2598 (2007). doi:10.1016/j.biortech.2006.09.010

    Article  Google Scholar 

  37. Sun, Y., Webley, P.A.: Preparation of activated carbons from corncob with large specific surface area by a variety of chemical activators and their application in gas storage. Chem. Eng. J. 162, 883–892 (2010). doi:10.1016/j.cej.2010.06.031

    Article  Google Scholar 

  38. Thomas, H.C.: Chromatography: a problem in kinetics. Ann. N. Y. Acad. Sci. 49, 161–182 (1948). doi:10.1111/j.1749-6632.1948.tb35248.x

    Article  Google Scholar 

  39. Yagmur, E., Ozmak, M., Aktas, Z.: A novel method for production of activated carbon from waste tea by chemical activation with microwave energy. Fuel 87, 3278–3285 (2008)

    Article  Google Scholar 

  40. Yan, G., Viraraghavan, Chen, M.: A new model for heavy metal removal in a biosorption column. Adsorpt. Sci. Technol. 19, 25–43 (2001). doi:10.1260/0263617011493953

    Article  Google Scholar 

  41. Yang, J., Qiu, K.: Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. Chem. Eng. J. 165, 209–217 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The present research was made possible through a university Grant, sponsored by the Ministry of Science and Technology, Iran, Tarbiat Modares University (TMU). The authors wish to thank Mrs Haghdoust (Technical assistant in Environmental Laboratory) for her assistant and the Tarbiat Modares University and Ministry of Science for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habibollah Younesi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alimohammadi, Z., Younesi, H. & Bahramifar, N. Batch and Column Adsorption of Reactive Red 198 from Textile Industry Effluent by Microporous Activated Carbon Developed from Walnut Shells. Waste Biomass Valor 7, 1255–1270 (2016). https://doi.org/10.1007/s12649-016-9506-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9506-4

Keywords

Navigation