Skip to main content
Log in

Carbon-based heterogeneous catalysts for conversion of cellulose and cellulosic feedstock

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The last decade has observed an increasing trend in research towards carbon-based catalysts for cellulose conversion to monosaccharides and other platform molecules. Cellulose, a linear structural polymer of glucose, is considered an inexhaustible source for the development of fuel and chemicals. For the efficient use of cellulose, solid acid catalysts have been exploited and documented in various reports. However, carbon-based solid catalysts show an advantage due to mild acid groups (− OH, − COOH, − SO3H) on the surface that increase the penetration ability of small-sized carbon particles into the confined cellulose interlayers. Most researchers have reported the role of functional groups on the carbon surface as anchors for holding the cellulose unit. In contrast, acidic groups such as -SO3H are involved in hydrolysis. This review summarizes various carbon-based catalysts and their surface modifications to convert cellulose into different value-added chemicals such as glucose, sorbitol, hydroxymethylfurfural, ethanol, and other polyols.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1

Similar content being viewed by others

References

  1. Shawky BT, Mahmoud MG, Ghazy EA et al (2011) Enzymatic hydrolysis of rice straw and corn stalks for monosugars production. J Genet Eng Biotechnol 9:59–63. https://doi.org/10.1016/j.jgeb.2011.05.001

    Article  Google Scholar 

  2. Sadhukhan J, Martinez-Hernandez E, Amezcua-Allieri MA et al (2019) Economic and environmental impact evaluation of various biomass feedstock for bioethanol production and correlations to lignocellulosic composition. Bioresour Technol Rep 7:100230. https://doi.org/10.1016/j.biteb.2019.100230

    Article  Google Scholar 

  3. Universiti Kebangsaan Malaysia, Ishak NS, Harun S (2018) i-Methodology development for compositional analysis of lignocellulosic biomass using visual basic application. JKUKM SI1:65–73. https://doi.org/10.17576/jkukm-2018-si1(4)-09

  4. Liu C, Zhang C, Liu K et al (2015) Aqueous-phase hydrogenolysis of glucose to value-added chemicals and biofuels: a comparative study of active metals. Biomass Bioenerg 72:189–199. https://doi.org/10.1016/j.biombioe.2014.11.005

    Article  Google Scholar 

  5. Liu Y-Y, Xu J-L, Zhang Y et al (2016) Reinforced alkali-pretreatment for enhancing enzymatic hydrolysis of sugarcane bagasse. Fuel Process Technol 143:1–6. https://doi.org/10.1016/j.fuproc.2015.11.004

    Article  Google Scholar 

  6. Kassaye S, Pant KK, Jain S (2016) Synergistic effect of ionic liquid and dilute sulphuric acid in the hydrolysis of microcrystalline cellulose. Fuel Process Technol 148:289–294. https://doi.org/10.1016/j.fuproc.2015.12.032

    Article  Google Scholar 

  7. Ramli NAS, Amin NAS (2014) Catalytic hydrolysis of cellulose and oil palm biomass in ionic liquid to reducing sugar for levulinic acid production. Fuel Process Technol 128:490–498. https://doi.org/10.1016/j.fuproc.2014.08.011

    Article  Google Scholar 

  8. Zhou L, Liu Z, Shi M et al (2013) Sulfonated hierarchical H-USY zeolite for efficient hydrolysis of hemicellulose/cellulose. Carbohyd Polym 98:146–151. https://doi.org/10.1016/j.carbpol.2013.05.074

    Article  Google Scholar 

  9. Takagaki A, Tagusagawa C, Domen K (2008) Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst. Chem Commun 5363. https://doi.org/10.1039/b810346a

  10. Tian J, Fang C, Cheng M, Wang X (2011) Hydrolysis of cellulose over CsxH3-xPW12O40 (X = 1–3) heteropoly acid catalysts. Chem Eng Technol 34:482–486. https://doi.org/10.1002/ceat.201000409

    Article  Google Scholar 

  11. Shuai L, Pan X (2012) Hydrolysis of cellulose by cellulase-mimetic solid catalyst. Energy Environ Sci 5:6889. https://doi.org/10.1039/c2ee03373a

    Article  Google Scholar 

  12. Kim S-J, Dwiatmoko AA, Choi JW et al (2010) Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis. Biores Technol 101:8273–8279. https://doi.org/10.1016/j.biortech.2010.06.047

    Article  Google Scholar 

  13. Hegner J, Pereira KC, DeBoef B, Lucht BL (2010) Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis. Tetrahedron Lett 51:2356–2358. https://doi.org/10.1016/j.tetlet.2010.02.148

    Article  Google Scholar 

  14. Akiyama G, Matsuda R, Sato H et al (2011) Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups. Adv Mater 23:3294–3297. https://doi.org/10.1002/adma.201101356

    Article  Google Scholar 

  15. Wang S, Du Y, Zhang W et al (2014) Catalytic conversion of cellulose into 5-hydroxymethylfurfural over chromium trichloride in ionic liquid. Korean J Chem Eng 31:1786–1791. https://doi.org/10.1007/s11814-014-0138-8

    Article  Google Scholar 

  16. Ogasawara Y, Itagaki S, Yamaguchi K, Mizuno N (2011) Saccharification of natural lignocellulose biomass and polysaccharides by highly negatively charged heteropolyacids in concentrated aqueous solution. Chemsuschem 4:519–525. https://doi.org/10.1002/cssc.201100025

    Article  Google Scholar 

  17. Li X, Jiang Y, Wang L et al (2012) Effective low-temperature hydrolysis of cellulose catalyzed by concentrated H3PW12O40 under microwave irradiation. RSC Adv 2:6921. https://doi.org/10.1039/c2ra21022c

    Article  Google Scholar 

  18. Sun Z, Cheng M, Li H et al (2012) One-pot depolymerization of cellulose into glucose and levulinic acid by heteropolyacid ionic liquid catalysis. RSC Adv 2:9058. https://doi.org/10.1039/c2ra01328b

    Article  Google Scholar 

  19. Lai D, Deng L, Guo Q, Fu Y (2011) Hydrolysis of biomass by magnetic solid acid. Energy Environ Sci 4:3552. https://doi.org/10.1039/c1ee01526e

    Article  Google Scholar 

  20. Takagaki A, Nishimura M, Nishimura S, Ebitani K (2011) Hydrolysis of sugars using magnetic silica nanoparticles with sulfonic acid groups. Chem Lett 40:1195–1197. https://doi.org/10.1246/cl.2011.1195

    Article  Google Scholar 

  21. Zhang F, Fang Z (2012) Hydrolysis of cellulose to glucose at the low temperature of 423 K with CaFe2O4-based solid catalyst. Biores Technol 124:440–445. https://doi.org/10.1016/j.biortech.2012.08.025

    Article  Google Scholar 

  22. Chung NH, Dien LQ, Cuong TD et al (2018) Influence of the acidity of solid catalyst HSO 3 -ZSM-5 on the hydrolysis of pretreated corncob. RSC Adv 8:41776–41781. https://doi.org/10.1039/C8RA09190K

    Article  Google Scholar 

  23. Morales-delaRosa S, Campos-Martin JM, Fierro JLG (2018) Chemical hydrolysis of cellulose into fermentable sugars through ionic liquids and antisolvent pretreatments using heterogeneous catalysts. Catal Today 302:87–93. https://doi.org/10.1016/j.cattod.2017.08.033

    Article  Google Scholar 

  24. Li H-X, Zhang X, Wang Q et al (2020) Study on the hydrolysis of cellulose with the regenerable and recyclable multifunctional solid acid as a catalyst and its catalytic hydrolytic kinetics. Cellulose 27:285–300. https://doi.org/10.1007/s10570-019-02777-3

    Article  Google Scholar 

  25. Wu Y, Fu Z, Yin D et al (2010) Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids. Green Chem 12:696. https://doi.org/10.1039/b917807d

    Article  Google Scholar 

  26. Jiang Y, Li X, Wang X et al (2012) Effective saccharification of lignocellulosic biomass over hydrolysis residue derived solid acid under microwave irradiation. Green Chem 14:2162. https://doi.org/10.1039/c2gc35306g

    Article  Google Scholar 

  27. Guo H, Qi X, Li L, Smith RL (2012) Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ionic liquid. Biores Technol 116:355–359. https://doi.org/10.1016/j.biortech.2012.03.098

    Article  Google Scholar 

  28. Pang J, Wang A, Zheng M, Zhang T (2010) Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chem Commun 46:6935. https://doi.org/10.1039/c0cc02014a

    Article  Google Scholar 

  29. Kobayashi H, Komanoya T, Hara K, Fukuoka A (2010) Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose. Chemsuschem 3:440–443. https://doi.org/10.1002/cssc.200900296

    Article  Google Scholar 

  30. Suganuma S, Nakajima K, Kitano M et al (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130:12787–12793. https://doi.org/10.1021/ja803983h

    Article  Google Scholar 

  31. Komanoya T, Kobayashi H, Hara K et al (2011) Catalysis and characterization of carbon-supported ruthenium for cellulose hydrolysis. Appl Catal A 407:188–194. https://doi.org/10.1016/j.apcata.2011.08.039

    Article  Google Scholar 

  32. Kobayashi H, Yabushita M, Komanoya T et al (2013) High-yielding one-pot synthesis of glucose from cellulose using simple activated carbons and trace hydrochloric acid. ACS Catal 3:581–587. https://doi.org/10.1021/cs300845f

    Article  Google Scholar 

  33. Verma D, Tiwari R, Sinha AK (2013) Depolymerization of cellulosic feedstocks using magnetically separable functionalized graphene oxide. RSC Adv 3:13265. https://doi.org/10.1039/c3ra41025k

    Article  Google Scholar 

  34. Zhao X, Wang J, Chen C et al (2014) Graphene oxide for cellulose hydrolysis: how it works as a highly active catalyst? Chem Commun 50:3439. https://doi.org/10.1039/c3cc49634a

    Article  Google Scholar 

  35. Pang Q, Wang L, Yang H et al (2014) Cellulose-derived carbon-bearing –Cl and –SO3H groups as a highly selective catalyst for the hydrolysis of cellulose to glucose. RSC Adv 4:41212–41218. https://doi.org/10.1039/C4RA05520A

    Article  Google Scholar 

  36. Charmot A, Chung P-W, Katz A (2014) Catalytic hydrolysis of cellulose to glucose using weak-acid surface sites on post synthetically modified carbon. ACS Sustainable Chem Eng 2:2866–2872. https://doi.org/10.1021/sc500669q

    Article  Google Scholar 

  37. Konwar LJ, Mäki-Arvela P, Salminen E et al (2015) Towards carbon-efficient biorefining: multifunctional mesoporous solid acids obtained from biodiesel production wastes for biomass conversion. Appl Catal B 176–177:20–35. https://doi.org/10.1016/j.apcatb.2015.03.005

    Article  Google Scholar 

  38. Kobayashi H, Kaiki H, Shrotri A et al (2016) Hydrolysis of woody biomass by a biomass-derived reusable heterogeneous catalyst. Chem Sci 7:692–696. https://doi.org/10.1039/C5SC03377B

    Article  Google Scholar 

  39. Shrotri A, Kobayashi H, Fukuoka A (2016) Air oxidation of activated carbon to synthesize a biomimetic catalyst for hydrolysis of cellulose. Chemsuschem 9:1299–1303. https://doi.org/10.1002/cssc.201600279

    Article  Google Scholar 

  40. Yamaguchi D, Watanabe K, Fukumi S (2016) Hydrolysis of cellulose by a mesoporous carbon-Fe2(SO4)3/γ-Fe2O3 nanoparticle-based solid acid catalyst. Sci Rep 6:20327. https://doi.org/10.1038/srep20327

    Article  Google Scholar 

  41. Sukma LPP, Qian EW (2018) Fabrication of weak-acid functionalized mesoporous carbon solid acid from tannic acid and its use for saccharification of cellulose. Environ Prog Sustain Energy 37:850–860. https://doi.org/10.1002/ep.12709

    Article  Google Scholar 

  42. Shrotri A, Kobayashi H, Kaiki H et al (2017) Cellulose hydrolysis using oxidized carbon catalyst in a plug-flow slurry process. Ind Eng Chem Res 56:14471–14478. https://doi.org/10.1021/acs.iecr.7b03918

    Article  Google Scholar 

  43. Wataniyakul P, Boonnoun P, Quitain AT et al (2018) Preparation of hydrothermal carbon as catalyst support for conversion of biomass to 5-hydroxymethylfurfural. Catal Commun 104:41–47. https://doi.org/10.1016/j.catcom.2017.10.014

    Article  Google Scholar 

  44. Zhang M, Wu M, Liu Q et al (2017) Graphene oxide-mediated cellulose-derived carbon as a highly selective catalyst for the hydrolysis of cellulose to glucose. Appl Catal A 543:218–224. https://doi.org/10.1016/j.apcata.2017.06.033

    Article  Google Scholar 

  45. Tyagi U, Anand N, Kumar D (2018) Synergistic effect of modified activated carbon and ionic liquid in the conversion of microcrystalline cellulose to 5-Hydroxymethyl Furfural. Biores Technol 267:326–332. https://doi.org/10.1016/j.biortech.2018.07.035

    Article  Google Scholar 

  46. Qiu M, Bai C, Yan L et al (2018) Efficient mechanochemical-assisted production of glucose from cellulose in aqueous solutions by carbonaceous solid acid catalysts. ACS Sustain Chem Eng 6:13826–13833. https://doi.org/10.1021/acssuschemeng.8b01910

    Article  Google Scholar 

  47. Zhang Y, Zhao M, Wang H et al (2019) Damaged starch derived carbon foam-supported heteropolyacid for catalytic conversion of cellulose: improved catalytic performance and efficient reusability. Biores Technol 288:121532. https://doi.org/10.1016/j.biortech.2019.121532

    Article  Google Scholar 

  48. Azar F-Z, Lillo-Ródenas MA, Román-Martínez MC (2019) Cellulose hydrolysis catalysed by mesoporous activated carbons functionalized under mild conditions. SN Appl Sci 1:1739. https://doi.org/10.1007/s42452-019-1776-6

    Article  Google Scholar 

  49. Wang S, Zhang L, Sima G et al (2019) Efficient hydrolysis of bagasse cellulose to glucose by mesoporous carbon solid acid derived from industrial lignin. Chem Phys Lett 736:136808. https://doi.org/10.1016/j.cplett.2019.136808

    Article  Google Scholar 

  50. Wang S, Sima G, Cui Y et al (2020) Efficient hydrolysis of cellulose to glucose catalyzed by lignin-derived mesoporous carbon solid acid in water. Chin J Chem Eng 28:1866–1874. https://doi.org/10.1016/j.cjche.2020.03.012

    Article  Google Scholar 

  51. Kurnia I, Yoshida A, Chaihad N et al (2019) Hydrolysis of cellulose and woody biomass over sustainable weak-acid carbon catalysts from alkaline lignin. Fuel Process Technol 196:106175. https://doi.org/10.1016/j.fuproc.2019.106175

    Article  Google Scholar 

  52. Wang F, Wang Y, Jin F et al (2014) One-pot hydrothermal conversion of cellulose into organic acids with CuO as an Oxidant. Ind Eng Chem Res 53:7939–7946. https://doi.org/10.1021/ie404311d

    Article  Google Scholar 

  53. Wu Q, Zhang G, Gao M et al (2019) Clean production of 5-hydroxymethylfurfural from cellulose using a hydrothermal/biomass-based carbon catalyst. J Clean Prod 213:1096–1102. https://doi.org/10.1016/j.jclepro.2018.12.276

    Article  Google Scholar 

  54. Tondro H, Zilouei H, Zargoosh K, Bazarganipour M (2021) Nettle leaves-based sulfonated graphene oxide for efficient hydrolysis of microcrystalline cellulose. Fuel 284:118975. https://doi.org/10.1016/j.fuel.2020.118975

    Article  Google Scholar 

  55. Jin Y, Lai C, Li Y, Cheng X (2020) Preparation and catalytic performance of biomass-based solid acid catalyst from Pennisetum sinense for cellulose hydrolysis. Int J Biol Macromol 165:1149–1155. https://doi.org/10.1016/j.ijbiomac.2020.09.256

    Article  Google Scholar 

  56. Tyagi U, Anand N (2021) Facile depolymerization of microcrystalline cellulose in ionic liquid medium catalyzed by carbon materials as catalysts. Curr Res Green Sustain Chem 4:100068. https://doi.org/10.1016/j.crgsc.2021.100068

    Article  Google Scholar 

  57. Frecha E, Torres D, Suelves I, Pinilla JL (2021) Custom-sized graphene oxide for the hydrolysis of cellulose. Carbon 175:429–439. https://doi.org/10.1016/j.carbon.2021.01.108

    Article  Google Scholar 

  58. Higai D, Lee C, Lang J, Qian EW (2021) Saccharification of cellulose using biomass-derived activated carbon-based solid acid catalysts. Fuel Process Technol 215:106738. https://doi.org/10.1016/j.fuproc.2021.106738

    Article  Google Scholar 

  59. Han JW, Lee H (2012) Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution. Catal Commun 19:115–118. https://doi.org/10.1016/j.catcom.2011.12.032

    Article  Google Scholar 

  60. Ribeiro LS, Delgado JJ, de Melo Órfão JJ, Ribeiro Pereira MF (2017) Influence of the surface chemistry of multiwalled carbon nanotubes on the selective conversion of cellulose into sorbitol. ChemCatChem 9:888–896. https://doi.org/10.1002/cctc.201601224

    Article  Google Scholar 

  61. Li Z, Liu Y, Liu C et al (2019) Direct conversion of cellulose into sorbitol catalyzed by a bifunctional catalyst. Biores Technol 274:190–197. https://doi.org/10.1016/j.biortech.2018.11.089

    Article  Google Scholar 

  62. Rey-Raap N, Ribeiro LS, de Órfão JJ, M, et al (2019) Catalytic conversion of cellulose to sorbitol over Ru supported on biomass-derived carbon-based materials. Appl Catal B 256:117826. https://doi.org/10.1016/j.apcatb.2019.117826

    Article  Google Scholar 

  63. Almohalla M, Rodríguez-Ramos I, Ribeiro LS et al (2018) Cooperative action of heteropolyacids and carbon supported Ru catalysts for the conversion of cellulose. Catal Today 301:65–71. https://doi.org/10.1016/j.cattod.2017.05.023

    Article  Google Scholar 

  64. Ribeiro LS, Órfão JJM, Pereira MFR (2018) Insights into the effect of the catalytic functions on selective production of ethylene glycol from lignocellulosic biomass over carbon supported ruthenium and tungsten catalysts. Biores Technol 263:402–409. https://doi.org/10.1016/j.biortech.2018.05.034

    Article  Google Scholar 

  65. Ribeiro LS, Delgado JJ, Órfão JJM, Pereira MFR (2017) Carbon-supported Ru-Ni bimetallic catalysts for the enhanced one-pot conversion of cellulose to sorbitol. Appl Catal B 217:265–274. https://doi.org/10.1016/j.apcatb.2017.04.078

    Article  Google Scholar 

  66. Lazaridis PA, Karakoulia SA, Teodorescu C et al (2017) High hexitols selectivity in cellulose hydrolytic hydrogenation over platinum (Pt) vs. ruthenium (Ru) catalysts supported on micro/mesoporous carbon. Appl Catal B 214:1–14. https://doi.org/10.1016/j.apcatb.2017.05.031

    Article  Google Scholar 

  67. Hilgert J, Meine N, Rinaldi R, Schüth F (2013) Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols. Energy Environ Sci 6:92–96. https://doi.org/10.1039/C2EE23057G

    Article  Google Scholar 

  68. Ribeiro LS, Delgado JJ, de Melo Órfão JJ, Pereira MFR (2017) Direct conversion of cellulose to sorbitol over ruthenium catalysts: influence of the support. Catal Today 279:244–251. https://doi.org/10.1016/j.cattod.2016.05.028

    Article  Google Scholar 

  69. Pramod CV, Fauziah R, Seshan K, Lange J-P (2018) Bio-based acrylic acid from sugar via propylene glycol and allyl alcohol. Catal Sci Technol 8:289–296. https://doi.org/10.1039/C7CY01416C

    Article  Google Scholar 

  70. Liu Q, Wang H, Xin H et al (2019) Front cover: selective cellulose hydrogenolysis to ethanol using Ni@C combined with phosphoric acid catalysts (ChemSusChem 17/2019). Chemsuschem 12:3878–3878. https://doi.org/10.1002/cssc.201902282

    Article  Google Scholar 

  71. Fabičovicová K, Lucas M, Claus P (2015) From microcrystalline cellulose to hard- and softwood-based feedstocks: their hydrogenolysis to polyols over a highly efficient ruthenium–tungsten catalyst. Green Chem 17:3075–3083. https://doi.org/10.1039/C5GC00421G

    Article  Google Scholar 

  72. Yang L, Yan X, Wang Q et al (2015) One-pot catalytic conversion of cellulose into polyols with Pt/CNTs catalysts. Carbohyd Res 404:87–92. https://doi.org/10.1016/j.carres.2014.12.001

    Article  Google Scholar 

  73. Liu Y, Liu H (2016) Kinetic insight into the effect of the catalytic functions on selective conversion of cellulose to polyols on carbon-supported WO3 and Ru catalysts. Catal Today 269:74–81. https://doi.org/10.1016/j.cattod.2015.09.056

    Article  Google Scholar 

  74. Ribeiro LS, de Órfão JJ, M, Pereira MFR (2021) Direct catalytic conversion of agro-forestry biomass wastes into ethylene glycol over CNT supported Ru and W catalysts. Ind Crops Prod 166:113461. https://doi.org/10.1016/j.indcrop.2021.113461

    Article  Google Scholar 

  75. Ribeiro LS, Órfão J, de Melo Órfão JJ, Pereira MFR (2018) Hydrolytic hydrogenation of cellulose to ethylene glycol over carbon nanotubes supported Ru–W bimetallic catalysts. Cellulose 25:2259–2272. https://doi.org/10.1007/s10570-018-1721-7

    Article  Google Scholar 

  76. Scholz D, Xie J, Kröcher O, Vogel F (2019) Mechanochemistry-assisted hydrolysis of softwood over stable sulfonated carbon catalysts in a semi-batch process. RSC Adv 9:33525–33538. https://doi.org/10.1039/C9RA07668A

    Article  Google Scholar 

  77. Mankar AR, Modak A, Pant KK (2021) High yield synthesis of hexitols and ethylene glycol through one-pot hydrolytic hydrogenation of cellulose. Fuel Process Technol 218:106847. https://doi.org/10.1016/j.fuproc.2021.106847

    Article  Google Scholar 

  78. Op de Beeck B, Dusselier M, Geboers J et al (2015) Direct catalytic conversion of cellulose to liquid straight-chain alkanes. Energy Environ Sci 8:230–240. https://doi.org/10.1039/C4EE01523A

    Article  Google Scholar 

  79. Chen L, Li Y, Zhang X et al (2019) One-pot conversion of cellulose to liquid hydrocarbon efficiently catalyzed by Ru/C and boron phosphate in aqueous medium. Energy Procedia 158:160–166. https://doi.org/10.1016/j.egypro.2019.01.064

    Article  Google Scholar 

  80. Guo H, Lian Y, Yan L et al (2013) Cellulose-derived superparamagnetic carbonaceous solid acid catalyst for cellulose hydrolysis in an ionic liquid or aqueous reaction system. Green Chem 15:2167. https://doi.org/10.1039/c3gc40433a

    Article  Google Scholar 

  81. Shen S, Cai B, Wang C et al (2014) Preparation of a novel carbon-based solid acid from cocarbonized starch and polyvinyl chloride for cellulose hydrolysis. Appl Catal A 473:70–74. https://doi.org/10.1016/j.apcata.2013.12.037

    Article  Google Scholar 

  82. Su T-C, Fang Z, Zhang F et al (2015) Hydrolysis of selected tropical plant wastes catalyzed by a magnetic carbonaceous acid with microwave. Sci Rep 5:17538. https://doi.org/10.1038/srep17538

    Article  Google Scholar 

  83. Qian EW, Sukma LPP, Li S, Higashi A (2016) Saccharification of cellulosic biomass using sulfonated mesoporous carbon-based catalysts. Environ Prog Sustain Energy 35:574–581. https://doi.org/10.1002/ep.12242

    Article  Google Scholar 

  84. Li T, Shen S, Cai B et al (2016) High-performance carbon-based solid acid prepared by environmental and efficient recycling of PVC waste for cellulose hydrolysis. RSC Adv 6:91921–91929. https://doi.org/10.1039/C6RA13358D

    Article  Google Scholar 

  85. Hu L, Li Z, Wu Z et al (2016) Catalytic hydrolysis of microcrystalline and rice straw-derived cellulose over a chlorine-doped magnetic carbonaceous solid acid. Ind Crops Prod 84:408–417. https://doi.org/10.1016/j.indcrop.2016.02.039

    Article  Google Scholar 

  86. Zhu J, Gan L, Li B, Yang X (2017) Synthesis and characteristics of lignin-derived solid acid catalysts for microcrystalline cellulose hydrolysis. Korean J Chem Eng 34:110–117. https://doi.org/10.1007/s11814-016-0220-5

    Article  Google Scholar 

  87. Gan L, Zhu J, Lv L (2017) Cellulose hydrolysis catalyzed by highly acidic lignin-derived carbonaceous catalyst synthesized via hydrothermal carbonization. Cellulose 24:5327–5339. https://doi.org/10.1007/s10570-017-1515-3

    Article  Google Scholar 

  88. Li H-X, Zhang X, Wang Q et al (2018) Preparation of the recycled and regenerated mesocarbon microbeads-based solid acid and its catalytic behaviors for hydrolysis of cellulose. Biores Technol 270:166–171. https://doi.org/10.1016/j.biortech.2018.09.037

    Article  Google Scholar 

  89. Li Y, Shen S, Wang C et al (2018) The effect of difference in chemical composition between cellulose and lignin on carbon-based solid acids applied for cellulose hydrolysis. Cellulose 25:1851–1863. https://doi.org/10.1007/s10570-018-1693-7

    Article  Google Scholar 

  90. Shen F, Guo T, Bai C et al (2018) Hydrolysis of cellulose with a one-pot synthesized sulfonated carbonaceous solid acid. Fuel Process Technol 169:244–247. https://doi.org/10.1016/j.fuproc.2017.10.015

    Article  Google Scholar 

  91. Gong R, Ma Z, Wang X et al (2019) Sulfonic-acid-functionalized carbon fiber from waste newspaper as a recyclable carbon-based solid acid catalyst for the hydrolysis of cellulose. RSC Adv 9:28902–28907. https://doi.org/10.1039/C9RA04568F

    Article  Google Scholar 

  92. Yuan S, Li T, Wang Y et al (2019) Double-adsorption functional carbon-based solid acids derived from co-pyrolysis of PVC and PE for cellulose hydrolysis. Fuel 237:895–902. https://doi.org/10.1016/j.fuel.2018.10.088

    Article  Google Scholar 

  93. Tyagi U, Anand N, Kumar D (2020) Efficient hydrolysis of Babool wood (Acacia nilotica) to total reducing sugars using acid/ionic liquid combination catalyzed by modified activated carbon. Renew Energy 146:56–65. https://doi.org/10.1016/j.renene.2019.06.150

    Article  Google Scholar 

  94. Mo H, Qiu J, Yang C et al (2020) Preparation and characterization of magnetic polyporous biochar for cellulase immobilization by physical adsorption. Cellulose 27:4963–4973. https://doi.org/10.1007/s10570-020-03125-6

    Article  Google Scholar 

  95. Mo H, Qiu J (2020) Preparation of chitosan/magnetic porous biochar as support for cellulase immobilization by using glutaraldehyde. Polymers 12:2672. https://doi.org/10.3390/polym12112672

    Article  Google Scholar 

  96. Mo H, Qiu J, Yang C et al (2020) Porous biochar/chitosan composites for high performance cellulase immobilization by glutaraldehyde. Enzyme Microb Technol 138:109561. https://doi.org/10.1016/j.enzmictec.2020.109561

    Article  Google Scholar 

  97. Ahmad R, Khare SK (2018) Immobilization of Aspergillus niger cellulase on multiwall carbon nanotubes for cellulose hydrolysis. Biores Technol 252:72–75. https://doi.org/10.1016/j.biortech.2017.12.082

    Article  Google Scholar 

  98. Armstrong G, Ruether M, Blighe F, Blau W (2009) Functionalised multi-walled carbon nanotubes for epoxy nanocomposites with improved performance: functionalised MWNTs for epoxy nanocomposites. Polym Int 58:1002–1009. https://doi.org/10.1002/pi.2621

    Article  Google Scholar 

  99. Anuradha Jabasingh S, Valli Nachiyar C (2012) Immobilization of Aspergillus nidulans SU04 cellulase on modified activated carbon: sorption and kinetic studies. J Therm Anal Calorim 109:193–202. https://doi.org/10.1007/s10973-011-1758-4

    Article  Google Scholar 

  100. Daoud FB-O, Kaddour S, Sadoun T (2010) Adsorption of cellulase Aspergillus niger on a commercial activated carbon: kinetics and equilibrium studies. Colloids Surf, B 75:93–99. https://doi.org/10.1016/j.colsurfb.2009.08.019

    Article  Google Scholar 

  101. Han J, Luo P, Wang Y et al (2018) The development of nanobiocatalysis via the immobilization of cellulase on composite magnetic nanomaterial for enhanced loading capacity and catalytic activity. Int J Biol Macromol 119:692–700. https://doi.org/10.1016/j.ijbiomac.2018.07.176

    Article  Google Scholar 

  102. Asar MF, Ahmad N, Husain Q (2020) Chitosan modified Fe3O4/graphene oxide nanocomposite as a support for high yield and stable immobilization of cellulase: its application in the saccharification of microcrystalline cellulose. Prep Biochem Biotechnol 50:460–467. https://doi.org/10.1080/10826068.2019.1706562

    Article  Google Scholar 

  103. Li Y, Wang X-Y, Jiang X-P et al (2015) Fabrication of graphene oxide decorated with Fe3O4@SiO2 for immobilization of cellulase. J Nanopart Res 17:8. https://doi.org/10.1007/s11051-014-2826-z

    Article  Google Scholar 

  104. Dias AS, Pillinger M, Valente AA (2006) Mesoporous silica-supported 12-tungstophosphoric acid catalysts for the liquid phase dehydration of d-xylose. Microporous Mesoporous Mater 94:214–225. https://doi.org/10.1016/j.micromeso.2006.03.035

    Article  Google Scholar 

  105. Hengne AM, Rode CV (2012) Cu–ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to γ-valerolactone. Green Chem 14:1064. https://doi.org/10.1039/c2gc16558a

    Article  Google Scholar 

  106. Ståhlberg T, Sørensen MG, Riisager A (2010) Direct conversion of glucose to 5-(hydroxymethyl)furfural in ionic liquids with lanthanide catalysts. Green Chem 12:321. https://doi.org/10.1039/b916354a

    Article  Google Scholar 

  107. Vilcocq L, Cabiac A, Especel C et al (2011) Study of the stability of Pt/SiO2–Al2O3 catalysts in aqueous medium: application for sorbitol transformation. Catal Commun 15:18–22. https://doi.org/10.1016/j.catcom.2011.08.002

    Article  Google Scholar 

  108. Sádaba I, Gorbanev YY, Kegnaes S et al (2013) Catalytic performance of zeolite-supported Vanadia in the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. ChemCatChem 5:284–293. https://doi.org/10.1002/cctc.201200482

    Article  Google Scholar 

  109. An D, Ye A, Deng W et al (2012) Selective conversion of cellobiose and cellulose into gluconic acid in water in the presence of oxygen, catalyzed by polyoxometalate-supported gold nanoparticles. Chem Eur J 18:2938–2947. https://doi.org/10.1002/chem.201103262

    Article  Google Scholar 

  110. Chia M, Pagán-Torres YJ, Hibbitts D et al (2011) Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium–rhenium catalysts. J Am Chem Soc 133:12675–12689. https://doi.org/10.1021/ja2038358

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, SB, thanks the Department of Biotechnology (DBT) for the research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The author CVP has initiated the idea of this review and has performed critical analysis and review of the work. The authors PK and SB have done literature survey and drafted the review article; the author AKS has given suggestions for improvement and performed general overall review.

Corresponding author

Correspondence to Venkata Pramod Chodimella.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, P., Bhardwaj, S., Chodimella, V.P. et al. Carbon-based heterogeneous catalysts for conversion of cellulose and cellulosic feedstock. Biomass Conv. Bioref. 14, 2937–2957 (2024). https://doi.org/10.1007/s13399-022-02675-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02675-y

Keywords

Navigation