Skip to main content

Advertisement

Log in

Biorefining of leather solid waste to harness energy and materials—A review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The tannery business is one of the essential areas in today’s global economy. However, on the other hand, this industry has its own peculiar culpability for huge pollution loads on the environment. The prime challenge is managing waste generated during the leather manufacturing process; thus, the tannery industry is becoming a growing concern. Recent technologies that use negative-valued garbage as a feedstock to generate energy or value-added products could be a game-changer in the current nonrenewable dependency. This review outlines different routes for converting tannery waste biomass into a gamut of marketable products and energy to pave the way for sustainable biorefinery development avenues. The primary organic resource is “collagen”—a natural protein present in the skin hides that can be transformed into different leather composites such as adhesives, adsorbents, and renewable fuels such as biogas. This review provides comprehensive information about circularizing the waste-to-wealth economy with futuristic perspectives and opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Sathish M, Madhan B, Sreeram KJ et al (2016) Alternative carrier medium for sustainable leather manufacturing–a review and perspective. J Clean Prod 112:49–58

    Article  Google Scholar 

  2. Priebe GPS, Kipper E, Gusmão AL et al (2016) Anaerobic digestion of chrome-tanned leather waste for biogas production. J Clean Prod 129:410–416

    Article  Google Scholar 

  3. Mohan SV, Nikhil GN, Chiranjeevi P et al (2016) Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour Technol 215:2–12

    Article  Google Scholar 

  4. Mozhiarasi V, Krishna BB, Nagabalaji V et al (2021) Leather industry waste based biorefinery. In: Waste Biorefinery. Elsevier, pp 267–304

  5. Omoloso O, Mortimer K, Wise WR, Jraisat L (2020) Sustainability research in the leather industry: a critical review of progress and opportunities for future research. J Clean Prod 125441

  6. Masilamani D, Madhan B, Shanmugam G et al (2016) Extraction of collagen from raw trimming wastes of tannery: a waste to wealth approach. J Clean Prod 113:338–344

    Article  Google Scholar 

  7. Duconseille A, Astruc T, Quintana N et al (2015) Gelatin structure and composition linked to hard capsule dissolution: a review. Food Hydrocoll 43:360–376

    Article  Google Scholar 

  8. Liu D, Nikoo M, Boran G et al (2015) Collagen and gelatin. Annu Rev Food Sci Technol 6:527–557

    Article  Google Scholar 

  9. Şaşmaz S, Karaağaç B, Uyanık N (2019) Utilization of chrome-tanned leather wastes in natural rubber and styrene-butadiene rubber blends. J Mater Cycles Waste Manag 21:166–175

    Article  Google Scholar 

  10. Shanmugam P, Horan NJ (2009) Optimising the biogas production from leather fleshing waste by co-digestion with MSW. Bioresour Technol 100:4117–4120

    Article  Google Scholar 

  11. John Sundar V, Gnanamani A, Muralidharan C et al (2011) Recovery and utilization of proteinous wastes of leather making: a review. Rev Environ Sci Bio/Technology 10:151–163

    Article  Google Scholar 

  12. Agustini CB, Meyer M, Da Costa M, Gutterres M (2018) Biogas from anaerobic co-digestion of chrome and vegetable tannery solid waste mixture: influence of the tanning agent and thermal pretreatment. Process Saf Environ Prot 118:24–31

    Article  Google Scholar 

  13. Senthil R, Hemalatha T, Kumar BS et al (2015) Recycling of finished leather wastes: a novel approach. Clean Technol Environ Policy 17:187–197

    Article  Google Scholar 

  14. Kluska J, Ochnio M, Kardaś D, Heda Ł (2019) The influence of temperature on the physicochemical properties of products of pyrolysis of leather-tannery waste. Waste Manag 88:248–256

    Article  Google Scholar 

  15. Li D, Yang W, Li G (2008) Extraction of native collagen from limed bovine split wastes through improved pretreatment methods. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 83:1041–1048

    Google Scholar 

  16. Ludvik J, Buljan J (2000) Chrome balance in leather processing. Vienna, Austria United Nations Ind Dev Organ

  17. Rosu L, Varganici C, Crudu A et al (2018) Ecofriendly wet–white leather vs. conventional tanned wet–blue leather. A photochemical approach. J Clean Prod 177:708–720

    Article  Google Scholar 

  18. Sethuraman C, Srinivas K, Sekaran G (2013) Double pyrolysis of chrome tanned leather solid waste for safe disposal and products recovery. Int J Sci Eng Res 4:61–67

    Google Scholar 

  19. Vaiopoulou E, Gikas P (2012) Effects of chromium on activated sludge and on the performance of wastewater treatment plants: a review. Water Res 46:549–570

    Article  Google Scholar 

  20. Yılmaz O, Kantarli IC, Yuksel M et al (2007) Conversion of leather wastes to useful products. Resour Conserv Recycl 49:436–448

    Article  Google Scholar 

  21. Arellano-Sánchez MG, Devouge-Boyer C, Hubert-Roux M et al (2021) Chromium determination in leather and other matrices: a review. Crit Rev Anal Chem 1–20

  22. Jiang H, Liu J, Han W (2016) The status and developments of leather solid waste treatment: a mini-review. Waste Manag Res 34:399–408

    Article  Google Scholar 

  23. Organization WH (2020) Chromium in drinking-water. World Health Organization

  24. Cary EE (1982) Chromium in air, soil and natural waters. Biol Environ Asp chromium 49–64

  25. Wei D, Jianfei Z, Xuepin L, Bi S (2012) Review for dechromization methods of chromium-containing leather waste. China Leather

  26. Pati A, Chaudhary R, Subramani S (2014) A review on management of chrome-tanned leather shavings: a holistic paradigm to combat the environmental issues. Environ Sci Pollut Res 21:11266–11282

    Article  Google Scholar 

  27. Cabeza LF, Taylor MM, DiMaio GL et al (1998) Processing of leather waste: pilot scale studies on chrome shavings. Isolation of potentially valuable protein products and chromium. Waste Manag 18:211–218

    Article  Google Scholar 

  28. Luo F (2004) Resource utilization of chromium containing leather waste. West Leather 36:28–31

    Google Scholar 

  29. Ludvik J, Buljan J (2000) Chrome management in the tanyard. United Nations Ind Dev Organ

  30. Wang X, Zhu J, Liu X et al (2020) Novel gelatin-based eco-friendly adhesive with a hyperbranched cross-linked structure. Ind Eng Chem Res 59:5500–5511

    Article  Google Scholar 

  31. Zhou J, Xu T, Wang X et al (2017) A low-cost and water resistant biomass adhesive derived from the hydrolysate of leather waste. RSC Adv 7:4024–4029

    Article  Google Scholar 

  32. Shaikh MAA, Deb AK, Akter E et al (2017) Resource addition to leather industry: adhesive from chrome shaving dust. J Sci Innov Res 6:138–141

    Article  Google Scholar 

  33. Dang X, Yuan H, Shan Z (2018) An eco-friendly material based on graft copolymer of gelatin extracted from leather solid waste for potential application in chemical sand-fixation. J Clean Prod 188:416–424

    Article  Google Scholar 

  34. Palani Y, Rao Jonnalagadda R, Fathima Nishter N (2017) Adsorption on activated carbon derived from tannery fleshing waste: adsorption isotherms, thermodynamics, and kinetics. Environ Prog Sustain Energy 36:1725–1733

    Article  Google Scholar 

  35. Amalraj A, Pius A (2014) Removal of selected basic dyes using activated carbon from tannery wastes. Sep Sci Technol 49:90–100

    Article  Google Scholar 

  36. Arcibar-Orozco JA, Barajas-Elias BS, Caballero-Briones F et al (2019) Hybrid carbon nanochromium composites prepared from chrome-tanned leather shavings for dye adsorption. Water, Air, Soil Pollut 230:1–17

    Article  Google Scholar 

  37. Rigueto CVT, Rosseto M, Krein DDC et al (2020) Alternative uses for tannery wastes: a review of environmental, sustainability, and science. J Leather Sci Eng 2:1–20

    Article  Google Scholar 

  38. Hussain FS, Memon N, Khatri Z, Memon S (2020) Solid waste-derived biodegradable keratin sponges for removal of chromium: a circular approach for waste management in leather industry. Environ Technol Innov 20:101120

    Article  Google Scholar 

  39. Kanagaraj J, Senthilvelan T, Panda RC, Kavitha S (2015) Eco-friendly waste management strategies for greener environment towards sustainable development in leather industry: a comprehensive review. J Clean Prod 89:1–17

    Article  Google Scholar 

  40. Kanth SV, Venba R, Madhan B et al (2009) Cleaner tanning practices for tannery pollution abatement: role of enzymes in eco-friendly vegetable tanning. J Clean Prod 17:507–515

    Article  Google Scholar 

  41. Selvaraju S, Ramalingam S, Rao JR (2017) Preparation and application of biodegradable nanocomposite for cleaner leather processing. J Clean Prod 158:225–232

    Article  Google Scholar 

  42. Ferreira MJ, Freitas F, Almeida MF (2010) The effect of leather fibers on the properties of rubber-leather composites. J Compos Mater 44:2801–2817

    Article  Google Scholar 

  43. Meşe P, Karaağaç B, Uyanık N (2018) Investigating effect of chrome tanned leather scraps in ethylene propylene diene monomer rubber. Prog Rubber Plast Recycl Technol 34:89–103

    Article  Google Scholar 

  44. Selvaraj S, Ramalingam S, Parida S et al (2021) Chromium containing leather trimmings valorization: sustainable sound absorber from collagen hydrolysate intercalated electrospun nanofibers. J Hazard Mater 405:124231

    Article  Google Scholar 

  45. Srivastava N, Dwivedi SP (2019) Development of green hybrid metal matrix composite using agricultural waste bagasse as reinforcement-a review. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p 12051

  46. Langmaier F, Mokrejs P, Kolomaznik K, Mladek M (2008) Biodegradable packing materials from hydrolysates of collagen waste proteins. Waste Manag 28:549–556

    Article  Google Scholar 

  47. Sommer I, Kunz PM (2012) Collagen-based packaging films for nonfood applications and their comparison with commercial polyolefin (polypropylene block copolymer) films. J Plast Film Sheeting 28:30–62

    Article  Google Scholar 

  48. Scopel BS, Ribeiro ME, Dettmer A, Baldasso C (2018) Cornstarch-gelatin films: commercial gelatin versus chromed leather waste gelatin and evaluation of drying conditions. J Polym Environ 26:1998–2006

    Article  Google Scholar 

  49. Ahmed K, Nizami SS, Raza NZ, Mahmood K (2012) Mechanical, swelling, and thermal aging properties of marble sludge-natural rubber composites. Int J Ind Chem 3:1–12

    Article  Google Scholar 

  50. Chrońska-Olszewska K, Przepiórkowska A (2011) A mixture of buffing dust and chrome shavings as a filler for nitrile rubbers. J Appl Polym Sci 122:2899–2906

    Article  Google Scholar 

  51. Chronska K, Przepiorkowska A (2008) Buffing dust as a filler of carboxylated butadiene-acrylonitrile rubber and butadiene-acrylonitrile rubber. J Hazard Mater 151:348–355

    Article  Google Scholar 

  52. Usmani RA (2020) Potential for energy and biofuel from biomass in India. Renew Energy 155:921–930

    Article  Google Scholar 

  53. Özgünay H, Çolak S, Zengin G et al (2007) Performance and emission study of biodiesel from leather industry pre-fleshings. Waste Manag 27:1897–1901

    Article  Google Scholar 

  54. Alptekin E, Canakci M, Sanli H (2012) Evaluation of leather industry wastes as a feedstock for biodiesel production. Fuel 95:214–220

    Article  Google Scholar 

  55. Alptekin E, Canakci M, Sanli H (2014) Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Manag 34:2146–2154

    Article  Google Scholar 

  56. Keskin A, Şen M, Emiroğlu AO (2020) Experimental studies on biodiesel production from leather industry waste fat and its effect on diesel engine characteristics. Fuel 276:118000

    Article  Google Scholar 

  57. Ong LK, Kurniawan A, Suwandi AC et al (2013) Transesterification of leather tanning waste to biodiesel at supercritical condition: kinetics and thermodynamics studies. J Supercrit Fluids 75:11–20

    Article  Google Scholar 

  58. Yuliana M, Santoso SP, Soetaredjo FE et al (2020) A one-pot synthesis of biodiesel from leather tanning waste using supercritical ethanol: process optimization. Biomass and Bioenergy 142:105761

    Article  Google Scholar 

  59. Dhayalan K, Fathima NN, Gnanamani A et al (2007) Biodegradability of leathers through anaerobic pathway. Waste Manag 27:760–767

    Article  Google Scholar 

  60. Evans EA, Evans KM, Ulrich A et al (2010) Anaerobic processes. Water Environ Res 82:1235–1287

    Article  Google Scholar 

  61. Sawatdeenarunat C, Nguyen D, Surendra KC et al (2016) Anaerobic biorefinery: current status, challenges, and opportunities. Bioresour Technol 215:304–313

    Article  Google Scholar 

  62. Kameswari KSB, Babu PR, Lekshmi B, Kalyanaraman C (2016) Solidification and stabilization of tannery sludge. In: Recycling of Solid Waste for Biofuels and Bio-chemicals. Springer, pp 381–398

  63. Appala VNSG, Pandhare NN, Bajpai S (2022) Mathematical models for optimization of anaerobic digestion and biogas production. In: Zero Waste Biorefinery. Springer, pp 575–591

  64. Karampinis E, Kourkoumpas D, Grammelis P, Kakaras E (2015) New power production options for biomass and cogeneration. Wiley Interdiscip Rev Energy Environ 4:471–485

    Google Scholar 

  65. Lin Y, Wang D, Liang J, Li G (2012) Mesophilic anaerobic co-digestion of pulp and paper sludge and food waste for methane production in a fed-batch basis. Environ Technol 33:2627–2633

    Article  Google Scholar 

  66. Bonoli M, Salomonia C, Caputoa A et al (2014) Anaerobic digestion of high-nitrogen tannery by-products in a multiphase process for biogas production. Chem Eng 37:271–276

    Google Scholar 

  67. Thangamani A, Rajakumar S, Ramanujam RA (2010) Anaerobic co-digestion of hazardous tannery solid waste and primary sludge: biodegradation kinetics and metabolite analysis. Clean Technol Environ Policy 12:517–524

    Article  Google Scholar 

  68. Agustini C, da Costa M, Gutterres M (2018) Biogas production from tannery solid wastes–scale-up and cost saving analysis. J Clean Prod 187:158–164

    Article  Google Scholar 

  69. Berhe S, Leta S (2018) Anaerobic co-digestion of tannery waste water and tannery solid waste using two-stage anaerobic sequencing batch reactor: focus on performances of methanogenic step. J Mater Cycles Waste Manag 20:1468–1482

    Article  Google Scholar 

  70. Mpofu AB, Oyekola OO, Welz PJ (2019) Co-digestion of tannery waste activated sludge with slaughterhouse sludge to improve organic biodegradability and biomethane generation. Process Saf Environ Prot 131:235–245

    Article  Google Scholar 

  71. Bayrakdar A (2020) Anaerobic co-digestion of tannery solid wastes: a comparison of single and two-phase anaerobic digestion. Waste and Biomass Valorization 11:1727–1735

    Article  Google Scholar 

  72. Xu R, Zhang K, Liu P et al (2018) A critical review on the interaction of substrate nutrient balance and microbial community structure and function in anaerobic co-digestion. Bioresour Technol 247:1119–1127

    Article  Google Scholar 

  73. Gomes CS, Repke J-U, Meyer M (2020) Investigation of different pre-treatments of chromium leather shavings to improve biogas production. J Leather Sci Eng 2:1–14

    Article  Google Scholar 

  74. Lee J, Hong J, Jang D, Park KY (2019) Hydrothermal carbonization of waste from leather processing and feasibility of produced hydrochar as an alternative solid fuel. J Environ Manage 247:115–120

    Article  Google Scholar 

  75. Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon N Y 47:2281–2289

    Article  Google Scholar 

  76. Kim D, Lee K, Park KY (2014) Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 130:120–125

    Article  Google Scholar 

  77. Forero-Núñez CA, Méndez-Velásquez JA, Sierra-Vargas FE (2015) Energetic improvement of tanned leather solid wastes by thermal treatment. Ing y Desarro 33:1–17

    Article  Google Scholar 

  78. Kluska J, Turzyński T, Kardaś D (2018) Experimental tests of co-combustion of pelletized leather tannery wastes and hardwood pellets. Waste Manag 79:22–29

    Article  Google Scholar 

  79. Onukak IE, Mohammed-Dabo IA, Ameh AO et al (2017) Production and characterization of biomass briquettes from tannery solid waste. Recycling 2:17

    Article  Google Scholar 

  80. Panichev N, Mabasa W, Ngobeni P et al (2008) The oxidation of Cr (III) to Cr (VI) in the environment by atmospheric oxygen during the bush fires. J Hazard Mater 153:937–941

    Article  Google Scholar 

  81. Verbinnen B, Billen P, Van Coninckxloo M, Vandecasteele C (2013) Heating temperature dependence of Cr (III) oxidation in the presence of alkali and alkaline earth salts and subsequent Cr (VI) leaching behavior. Environ Sci Technol 47:5858–5863

    Article  Google Scholar 

  82. Bahillo A, Armesto L, Cabanillas A, Otero J (2004) Thermal valorization of footwear leather wastes in bubbling fluidized bed combustion. Waste Manag 24:935–944

    Article  Google Scholar 

  83. Sethuraman C, Srinivas K, Sekaran G (2014) Pyrolysis coupled pulse oxygen incineration for disposal of hazardous chromium impregnated fine particulate solid waste generated from leather industry. J Environ Chem Eng 2:516–524

    Article  Google Scholar 

  84. Konikkara N, Kennedy LJ, Vijaya JJ (2016) Preparation and characterization of hierarchical porous carbons derived from solid leather waste for supercapacitor applications. J Hazard Mater 318:173–185

    Article  Google Scholar 

  85. Lee KH, Lee Y-W, Lee SW et al (2015) Ice-templated self-assembly of VOPO 4–graphene nanocomposites for vertically porous 3D supercapacitor electrodes. Sci Rep 5:1–10

    Google Scholar 

  86. Ashokkumar M, Narayanan NT, Reddy ALM et al (2012) Transforming collagen wastes into doped nanocarbons for sustainable energy applications. Green Chem 14:1689–1695

    Article  Google Scholar 

  87. Kennedy LJ, Ratnaji T, Konikkara N, Vijaya JJ (2018) Value added porous carbon from leather wastes as potential supercapacitor electrode using neutral electrolyte. J Clean Prod 197:930–936

    Article  Google Scholar 

  88. Lei J, Zhou J, Li J et al (2018) Novel collagen waste derived Mn-doped nitrogen-containing carbon for supercapacitors. Electrochim Acta 285:292–300

    Article  Google Scholar 

  89. Yoseph Z, Christopher JG, Demessie BA et al (2020) Extraction of elastin from tannery wastes: a cleaner technology for tannery waste management. J Clean Prod 243:118471

    Article  Google Scholar 

  90. Chojnacka K, Moustakas K, Witek-Krowiak A (2020) Bio-based fertilizers: a practical approach towards circular economy. Bioresour Technol 295:122223

    Article  Google Scholar 

  91. Törnwall E, Pettersson H, Thorin E, Schwede S (2017) Post-treatment of biogas digestate–an evaluation of ammonium recovery, energy use and sanitation. Energy Procedia 142:957–963

    Article  Google Scholar 

  92. Dragicevic I, Sogn TA, Eich-Greatorex S (2018) Recycling of biogas digestates in crop production—soil and plant trace metal content and variability. Front Sustain Food Syst 2:45

    Article  Google Scholar 

  93. Majee S, Halder G, Mandal DD et al (2021) Transforming wet blue leather and potato peel into an eco-friendly bio-organic NPK fertilizer for intensifying crop productivity and retrieving value-added recyclable chromium salts. J Hazard Mater 411:125046

    Article  Google Scholar 

  94. Majee S, Halder G, Mandal T (2019) Formulating nitrogen-phosphorous-potassium enriched organic manure from solid waste: a novel approach of waste valorization. Process Saf Environ Prot 132:160–168

    Article  Google Scholar 

  95. Dang X, Yang M, Zhang B et al (2019) Recovery and utilization of collagen protein powder extracted from chromium leather scrap waste. Environ Sci Pollut Res 26:7277–7283

    Article  Google Scholar 

  96. Dumitru MA, Corbu G, Ștefana J (2016) Leather hydolysate evaluated as bioactive potato fertilizer. Sci Bull Ser F Biotechnol 20:40–43

    Google Scholar 

  97. Chojnacka K, Górecka H, Michalak I, Górecki H (2011) A review: valorization of keratinous materials. Waste and Biomass Valorization 2:317–321

    Article  Google Scholar 

  98. Yuvaraj A, Karmegam N, Ravindran B et al (2020) Recycling of leather industrial sludge through vermitechnology for a cleaner environment—a review. Ind Crops Prod 155:112791

    Article  Google Scholar 

  99. Nunes RR, Pigatin LBF, Oliveira TS et al (2018) Vermicomposted tannery wastes in the organic cultivation of sweet pepper: growth, nutritive value and production. Int J Recycl Org Waste Agric 7:313–324

    Article  Google Scholar 

  100. Ravindran B, Lee SR, Chang SW et al (2019) Positive effects of compost and vermicompost produced from tannery waste-animal fleshing on the growth and yield of commercial crop-tomato (Lycopersicon esculentum L.) plant. J Environ Manage 234:154–158

    Article  Google Scholar 

  101. Goswami L, Mukhopadhyay R, Bhattacharya SS et al (2018) Detoxification of chromium-rich tannery industry sludge by Eudrillus eugeniae: insight on compost quality fortification and microbial enrichment. Bioresour Technol 266:472–481

    Article  Google Scholar 

  102. Silva RC, Resende Júnior JC de, Lima RF de et al (2012) Potential of wet blue leather waste for ruminant feeding. Rev Bras Zootec 41:1070–1073

  103. Paul H, Antunes APM, Covington AD et al (2013) Towards zero solid waste: utilising tannery waste as a protein source for poultry feed. Paper presented to: 28th International Conference on Solid Waste Technology and Management, Philadelphia, PA, USA, 10–13 March 2013. The Journal of Solid Waste Technology and Management, Philadelphia USA. http://nectar.northampton.ac.uk/5238/

  104. Chaudhary R, Pati A (2016) Poultry feed based on protein hydrolysate derived from chrome-tanned leather solid waste: creating value from waste. Environ Sci Pollut Res 23:8120–8124

    Article  Google Scholar 

  105. Moktadir MA, Ahmadi HB, Sultana R et al (2020) Circular economy practices in the leather industry: a practical step towards sustainable development. J Clean Prod 251:119737

    Article  Google Scholar 

  106. Mohan SV, Katakojwala R (2021) The circular chemistry conceptual framework: a way forward to sustainability in industry 4.0. Curr Opin Green Sustain Chem 28:100434

    Article  Google Scholar 

  107. Katakojwala R, Mohan SV (2021) A critical view on the environmental sustainability of biorefinery systems. Curr Opin Green Sustain Chem 27:100392

    Article  Google Scholar 

  108. Oliveira LS, Machado RL (2021) Application of optimization methods in the closed-loop supply chain: a literature review. J Comb Optim 41:357–400

    Article  MathSciNet  Google Scholar 

  109. Hu J, Xiao Z, Zhou R et al (2011) Ecological utilization of leather tannery waste with circular economy model. J Clean Prod 19:221–228

    Article  Google Scholar 

  110. Navarro D, Wu J, Lin W et al (2020) Life cycle assessment and leather production. J Leather Sci Eng 2:1–13

    Article  Google Scholar 

  111. Pringle T, Barwood M, Rahimifard S (2016) The challenges in achieving a circular economy within leather recycling. Procedia CIRP 48:544–549

    Article  Google Scholar 

  112. Tasca AL, Puccini M (2019) Leather tanning: life cycle assessment of retanning, fatliquoring and dyeing. J Clean Prod 226:720–729

    Article  Google Scholar 

  113. Sathish M, Madhan B, Rao JR (2019) Leather solid waste: an eco-benign raw material for leather chemical preparation–a circular economy example. Waste Manag 87:357–367

    Article  Google Scholar 

  114. Kanagaraj J, Panda RC, Kumar V (2020) Trends and advancements in sustainable leather processing: future directions and challenges—a review. J Environ Chem Eng 8:104379

    Article  Google Scholar 

  115. Schroeder P, Anggraeni K, Weber U (2019) The relevance of circular economy practices to the sustainable development goals. J Ind Ecol 23:77–95

    Article  Google Scholar 

  116. Rodriguez-Anton JM, Rubio-Andrada L, Celemín-Pedroche MS, Alonso-Almeida MDM (2019) Analysis of the relations between circular economy and sustainable development goals. Int J Sustain Dev World Ecol 26:708–720

    Article  Google Scholar 

  117. Le Blanc D (2015) Towards integration at last? The sustainable development goals as a network of targets. Sustain Dev 23:176–187

    Article  Google Scholar 

  118. Moktadir MA, Kumar A, Ali SM et al (2020) Critical success factors for a circular economy: implications for business strategy and the environment. Bus Strateg Environ 29:3611–3635

    Article  Google Scholar 

  119. Karuppiah K, Sankaranarayanan B, Ali SM et al (2021) Inhibitors to circular economy practices in the leather industry using an integrated approach: implications for sustainable development goals in emerging economies. Sustain Prod Consum 27:1554–1568

    Article  Google Scholar 

  120. Dowlath MJH, Karuppannan SK, Rajan P et al (2021) Application of advanced technologies in managing wastes produced by leather industries—an approach toward zero waste technology. In: Concepts of Advanced Zero Waste Tools. Elsevier, pp 143–179

  121. de Pee A, Pinner D, Roelofsen O et al (2018) Decarbonization of industrial sectors: the next frontier. McKinsey Glob Inst 66.

  122. Sivakumar V (2021) Approaches towards tannery modernization and up-gradation: leather Industry 4.0: multi-disciplinary approach. J Am Leather Chem Assoc 116. https://doi.org/10.34314/jalca.v116i2.4237

  123. Oliveira LCA, Goncalves M, Oliveira DQL et al (2007) Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium. J Hazard Mater 141:344–347

    Article  Google Scholar 

  124. Kantarli IC, Yanik J (2010) Activated carbon from leather shaving wastes and its application in removal of toxic materials. J Hazard Mater 179:348–356

    Article  Google Scholar 

  125. Ramya V, Murugan D, Lajapathirai C et al (2019) Removal of toxic pollutants using tannery sludge derived mesoporous activated carbon: experimental and modelling studies. J Environ Chem Eng 7:102798

    Article  Google Scholar 

  126. Piccin JS, Gomes CS, Mella B, Gutterres M (2016) Color removal from real leather dyeing effluent using tannery waste as an adsorbent. J Environ Chem Eng 4:1061–1067

    Article  Google Scholar 

  127. Mella B, Puchana-Rosero MJ, Costa DES, Gutterres M (2017) Utilization of tannery solid waste as an alternative biosorbent for acid dyes in wastewater treatment. J Mol Liq 242:137–145

    Article  Google Scholar 

  128. Oyelaran OA, Balogun O, Ambali AO, Abidoye JK (2017) Characterization of briquette produced from tannery solid waste. J Mater Eng Struct 4:79–86

    Google Scholar 

  129. Mukherjee D, Kar S, Mandal A et al (2019) Immobilization of tannery industrial sludge in ceramic membrane preparation and hydrophobic surface modification for application in atrazine remediation from water. J Eur Ceram Soc 39:3235–3246

    Article  Google Scholar 

  130. Masilamani D, Srinivasan V, Ramachandran RK et al (2017) Sustainable packaging materials from tannery trimming solid waste: a new paradigm in wealth from waste approaches. J Clean Prod 164:885–891

    Article  Google Scholar 

  131. Ocak B (2018) Film-forming ability of collagen hydrolysate extracted from leather solid wastes with chitosan. Environ Sci Pollut Res 25:4643–4655

    Article  Google Scholar 

  132. Amir S, Benlboukht F, Cancian N et al (2008) Physico-chemical analysis of tannery solid waste and structural characterization of its isolated humic acids after composting. J Hazard Mater 160:448–455

    Article  Google Scholar 

  133. Cardona N, Velásquez S, Giraldo D (2017) Characterization of leather wastes from chrome tanning and its effect as filler on the rheometric properties of natural rubber compounds. J Polym Environ 25:1190–1197

    Article  Google Scholar 

  134. Senthil R, Hemalatha T, Manikandan R et al (2015) Leather boards from buffing dust: a novel perspective. Clean Technol Environ policy 17:571–576

    Article  Google Scholar 

  135. Bufalo G, Florio C, Cinelli G et al (2018) Principles of minimal wrecking and maximum separation of solid waste to innovate tanning industries and reduce their environmental impact: the case of paperboard manufacture. J Clean Prod 174:324–332

    Article  Google Scholar 

  136. Nashy E-SHA, Al-Ashkar E, Moez AA (2012) Optical and spectroscopic studies on tannery wastes as a possible source of organic semiconductors. Spectrochim Acta Part A Mol Biomol Spectrosc 86:33–38

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mrs. V.N.S. Gunasri Appala is a research scholar pursuing her Ph.D. under the supervision of Dr. Nitin N. Pandhare and Dr. S. Bajpai. Both the research supervisors have suggested the main contents discussed in this review paper. Mrs. V.N.S. Gunasri Appala has carried out a literature review and drafted the manuscript.

Corresponding author

Correspondence to Nitin Naresh Pandhare.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appala, V.N.S.G., Pandhare, N.N. & Bajpai, S. Biorefining of leather solid waste to harness energy and materials—A review. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-02455-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-02455-8

Keywords

Navigation