Skip to main content

Advertisement

Log in

Combustion performance of charcoal: a comparative study on Miombo woodland native species and Eucalyptus grandis

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Charcoal is the most preferred energy source in Mozambique and contributes to income generation for most households and small-medium scale commercial entities. However, charcoal production contributes to the illegal exploitation and rapid decrease of natural forest cover. Attempts from the government to address this challenge by implementing energy plantation projects using Eucalyptus spp. have failed due to local communities’ preference for charcoal produced from native wood species. Therefore, this study aims at evaluating the combustibility of charcoal produced from Eucalyptus grandis and Miombo native species, in order to support new energy plantation projects, as well as adequate interventions toward the improvement of residential cooking and heating appliances in Mozambique. All charcoals were produced on a laboratory scale at a final temperature of 450 °C. Charcoal samples were collected, and their proximate chemical composition, heat value, combustion parameters, and indexes obtained by thermogravimetric analysis were evaluated. The charcoal from Eucalyptus grandis presented lower ash content (0.49%) and fuel ratio (2.81), higher content of volatile materials (26.14%), and heat value (31.15 MJ kg−1) as compared to charcoal from Miombo species. However, Miombo species presented a higher combustion performance, especially Uapaca kirkiana, which presented higher combustibility (1.37 × 104% min−1/°C2) and ignition (13.13 × 103% min−3) indexes. Eucalyptus grandis is a fast-growing species, and its charcoal presented suitable chemical properties and combustibility for domestic use; therefore, its use as an alternative to Miombo species is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. C. Sumba, A.A. Owiny, K. Ouma, N. Matakala, C. Monde, P.W. Chirwa, S. Syampungani, Ecofootprint of charcoal production and its economic contribution towards rural livelihoods in sub-Saharan Africa, in: Agroecol. Footprints Manag. Sustain. Food Syst., Springer Singapore, 2021: pp. 445–472. https://doi.org/10.1007/978-981-15-9496-0_15.

  2. Afonso CMI, Gonçalves TAP, de Muñiz GIB, de Matos JLM, Nisgoski S (2014) Mozambique’s charcoals—energetic properties of nine native species. Eur J Wood Wood Prod 73:131–133. https://doi.org/10.1007/s00107-014-0855-z

    Article  Google Scholar 

  3. Castán Broto V, de Arthur MFSR, Guibrunet L (2020) Energy profiles among urban elite households in Mozambique: explaining the persistence of charcoal in urban areas. Energy Res. Soc. Sci 65:101478. https://doi.org/10.1016/j.erss.2020.101478

    Article  Google Scholar 

  4. Silva JA, Sedano F, Flanagan S, Ombe ZA, Machoco R, Meque CH, Sitoe A, Ribeiro N, Anderson K, Baule S, Hurtt G (2019) Charcoal-related forest degradation dynamics in dry African woodlands: evidence from Mozambique. Appl Geogr 107:72–81. https://doi.org/10.1016/j.apgeog.2019.04.006

    Article  Google Scholar 

  5. IEA, World energy outlook, 2017. https://www.iea.org/topics/world-energy-outlook.

  6. Baumert S, Luz AC, Fisher J, Vollmer F, Ryan CM, Patenaude G, Zorrilla-Miras P, Artur L, Nhantumbo I, Macqueen D (2016) Charcoal supply chains from Mabalane to Maputo: who benefits?, Energy. Sustain Dev 33:129–138. https://doi.org/10.1016/j.esd.2016.06.003

    Article  Google Scholar 

  7. S. Nicolai, C. Hoy, T. Berliner, T. Aedy, (2015) Projecting progress: reaching the SDGs by 2030, Dev. Prog. 1–48. http://www.odi.org/sites/odi.org.uk/files/odi-assets/publications-opinion-files/9839.pdf.

  8. GdM, ESTRATÉGIA DE CONSERVAÇÃO E USO SUSTENTÁVEL DA ENERGIA DA BIOMASSA, Maputo, 2013. http://www.biofund.org.mz/wp-content/uploads/2019/01/1548670181-2015 10 08 ECUSEB - Estrategia de Conservacao e Uso Sustentavel da Energia de Biomassa 2.pdf (accessed May 27, 2020).

  9. W. Overbeek, The Expansion of tree monocultures in Mozambique. Impacts on local peasant communities in the province of Niassa, World Rainforest Movement, Montevideo, 2010. http://www.wrm.org.uy.

  10. Guedes BS, Olsson BA, Egnell G, Sitoe AA, Karltun E (2018) Plantations of Pinus and Eucalyptus replacing degraded mountain Miombo woodlands in Mozambique significantly increase carbon sequestration. Glob Ecol Conserv 14:e00401. https://doi.org/10.1016/j.gecco.2018.e00401

    Article  Google Scholar 

  11. Hofiço NDSA, Costa EA, Fleig FD, Finger CAG, Hess AF (2020) Height-diameter relationships for eucalyptus grandis hill ex. Maiden in Mozambique: using mixed-effects modeling approach, Cerne 26:183–192. https://doi.org/10.1590/01047760202026022677

    Article  Google Scholar 

  12. Galina NR, Romero Luna CM, Arce GLAF, Ávila I (2019) Comparative study on combustion and oxy-fuel combustion environments using mixtures of coal with sugarcane bagasse and biomass sorghum bagasse by the thermogravimetric analysis. J Energy Inst 92:741–754. https://doi.org/10.1016/j.joei.2018.02.008

    Article  Google Scholar 

  13. Royo J, Canalís P, Quintana D, Díaz-Ramírez M, Sin A, Rezeau A (2019) Experimental study on the ash behaviour in combustion of pelletized residual agricultural biomass. Fuel 239:991–1000. https://doi.org/10.1016/J.FUEL.2018.11.054

    Article  Google Scholar 

  14. Cuvilas C, Lhate I, Jirjis R, Terziev N (2014) The characterization of wood species from mozambique as a fuel, Energy Sources. Part A Recover Util Environ Eff 36:851–857. https://doi.org/10.1080/15567036.2011.582601

    Article  Google Scholar 

  15. Ismael Afonso CM, Pereira Gonçalves TA, Bolzon de Muñiz GI, Monteiro de Matos JL, Nisgoski S (2015) Carbones de Mozambique: Anatomía de nueve especies nativas. Bosque 36:105–112. https://doi.org/10.4067/S0717-92002015000100011

    Article  Google Scholar 

  16. Massuque JZ, de Assis MR, Trugilho PF (2020) Characterization of Miombo species used by rural communities as fuelwood in northern Mozambique, Energy Sources. Part A Recover Util Environ Eff. https://doi.org/10.1080/15567036.2020.1815910

    Article  Google Scholar 

  17. Massuque J, Reis M, Breno DA, Loureiro A, Efraim C, Trugilho PF (2021) Influence of lignin on wood carbonization and charcoal properties of Miombo woodland native species. Eur J Wood Wood Prod. https://doi.org/10.1007/s00107-021-01669-3

    Article  Google Scholar 

  18. Lubwama M, Yiga VA, Ssempijja I, Lubwama HN (2021) Thermal and mechanical characteristics of local firewood species and resulting charcoal produced by slow pyrolysis. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01840-z

    Article  Google Scholar 

  19. Nisgoski S, Vieira HC, Gonçalves TAP, Afonso CM, de Muñiz GIB (2019) Impact of carbonization parameters on anatomic aspects and near-infrared spectra of three species from Mozambique. Wood Sci Technol 53:1373–1394. https://doi.org/10.1007/s00226-019-01134-8

    Article  Google Scholar 

  20. Massuque J, de Sousa KIR, Trugilho PF (2021) Effect of fiber and vessel biometry on Miombo native species wood combustibility. South For a J For Sci. https://doi.org/10.2989/20702620.2021.1994341

    Article  Google Scholar 

  21. ASTM, ASTM. Chemical Analysis of Wood Charcoal 1, i (2013) 1–2. https://doi.org/10.1520/D1762-84R13.2.

  22. ASTM E711–87, Standard Test Method for Gross Calorific Value of Refuse-Derived Fuel by the Bomb Calorimeter, Annu. B. ASTM Stand. 87 (2004) 1–8. https://doi.org/10.1520/E0711-87R04.2.

  23. Xiong S, Zhang S, Wu Q, Guo X, Dong A, Chen C (2014) Investigation on cotton stalk and bamboo sawdust carbonization for barbecue charcoal preparation. Bioresour Technol 152:86–92. https://doi.org/10.1016/j.biortech.2013.11.005

    Article  Google Scholar 

  24. Arauzo PJ, Atienza-Martínez M, Ábrego J, Olszewski MP, Cao Z, Kruse A (2020) Combustion characteristics of hydrochar and pyrochar derived from digested sewage sludge. Energies 13:1–15. https://doi.org/10.3390/en13164164

    Article  Google Scholar 

  25. Wang CA, Liu Y, Zhang X, Che D (2011) A study on coal properties and combustion characteristics of blended coals in northwestern China. Energy Fuels 25:3634–3645. https://doi.org/10.1021/ef200686d

    Article  Google Scholar 

  26. Moon C, Sung Y, Ahn S, Kim T, Choi G, Kim D (2013) Effect of blending ratio on combustion performance in blends of biomass and coals of different ranks. Exp Therm Fluid Sci 47:232–240. https://doi.org/10.1016/j.expthermflusci.2013.01.019

    Article  Google Scholar 

  27. Zou H, Evrendilek F, Liu J, Buyukada M (2019) Combustion behaviors of pileus and stipe parts of Lentinus edodes using thermogravimetric-mass spectrometry and Fourier transform infrared spectroscopy analyses: thermal conversion, kinetic, thermodynamic, gas emission and optimization analyses. Bioresour Technol 288:121481. https://doi.org/10.1016/j.biortech.2019.121481

    Article  Google Scholar 

  28. Ferreira DF (2019) Sisvar: a computer analysis system to fixed effects split plot type designs. Rev. Bras. Biometria 37:529. https://doi.org/10.28951/rbb.v37i4.450

    Article  Google Scholar 

  29. Rousset P, Figueiredo C, De Souza M, Quirino W (2011) Pressure effect on the quality of eucalyptus wood charcoal for the steel industry: a statistical analysis approach. Fuel Process Technol 92:1890–1897. https://doi.org/10.1016/j.fuproc.2011.05.005

    Article  Google Scholar 

  30. Vassilev SV, Vassileva CG, Baxter D (2014) Trace element concentrations and associations in some biomass ashes. Fuel 129:292–313. https://doi.org/10.1016/j.fuel.2014.04.001

    Article  Google Scholar 

  31. Wang X, Zhu Y, Hu Z, Zhang L, Yang S, Ruan R, Bai S, Tan H (2020) Characteristics of ash and slag from four biomass-fired power plants: ash/slag ratio, unburned carbon, leaching of major and trace elements. Energy Convers Manag 214:112897. https://doi.org/10.1016/j.enconman.2020.112897

    Article  Google Scholar 

  32. Etchie AT, Etchie TO, Elemile OO, Boladale O, Oni T, Akanno I, Bankole DT, Ibitoye OO, Pillarisetti A, Sivanesan S, Afolabi TY, Krishnamurthi K, Swaminathan N (2020) Burn to kill: Wood ash a silent killer in Africa. Sci Total Environ 748:141316. https://doi.org/10.1016/j.scitotenv.2020.141316

    Article  Google Scholar 

  33. D. Neina, S. Faust, R.G. Joergensen, (2020) Characterization of charcoal and firewood ash for use in African peri-urban agriculture, Chem. Biol. Technol. Agric. 7. https://doi.org/10.1186/s40538-019-0171-2.

  34. de Paula Protásio T, Scatolino MV, de Araújo ACC, de Oliveira AFCF, de Figueiredo ICR, de Assis MR, Trugilho PF (2019) Assessing proximate composition, extractive concentration, and lignin quality to determine appropriate parameters for selection of superior Eucalyptus firewood. Bioenergy Res. 12:626–641. https://doi.org/10.1007/s12155-019-10004-x

    Article  Google Scholar 

  35. García R, Pizarro C, Lavín AG, Bueno JL (2014) Spanish biofuels heating value estimation. Part II: proximate analysis data, Fuel 117:1139–1147. https://doi.org/10.1016/j.fuel.2013.08.049

    Article  Google Scholar 

  36. J.S. da Costa, M.G. da Silva, M.V. Scatolino, M.D.R. Lima, M.R. de Assis, L. Bufalino, S. Numazawa, P.F. Trugilho, T. de P. Protásio, (2020) Relating features and combustion behavior of biomasses from the Amazonian agroforestry chain, Biomass Convers. Biorefinery. https://doi.org/10.1007/s13399-020-01121-1.

  37. Folgueras MB, Díaz RM, Xiberta J (2005) Pyrolysis of blends of different types of sewage sludge with one bituminous coal. Energy 30:1079–1091. https://doi.org/10.1016/j.energy.2004.08.001

    Article  Google Scholar 

  38. Cheng J, Zhou F, Xuan X, Liu J, Zhou J, Cen K (2019) Chinese Journal of Chemical Engineering The catalytic effect of the Na and Ca-rich industrial wastes on the thermal ignition of coal combustion ☆, Chinese. J Chem Eng 27:2467–2471. https://doi.org/10.1016/j.cjche.2019.02.037

    Article  Google Scholar 

  39. Coal A, Li XG, Ma BG, Xu L, Luo ZT, Wang K (2007) Catalytic effect of metallic oxides on combustion behavior of high ash coal 113:2669–2672

    Google Scholar 

  40. Ma B, Li X, Xu L, Wang K, Wang X (2006) Investigation on catalyzed combustion of high ash coal by thermogravimetric analysis 445:19–22. https://doi.org/10.1016/j.tca.2006.03.021

    Article  Google Scholar 

  41. H. Qin, Y. Yue, L. Zhang, Y. Liu, M. Chi, H. Liu, Q. Wang, B. Liu, (2016) Study on co-combustion kinetics of oil shale sludge and semicoke, energy and fuels. 30 (2016) 2373–2384. https://doi.org/10.1021/acs.energyfuels.5b02024.

Download references

Funding

The authors would like thank the Ministry of Science and Technology, Higher Education and Professional Technician (MCTESTP-MOZAMBIQUE, Process no. 37.01.2015) and the Coordination for the Improvement of Higher Education Personnel (CAPES-BRAZIL, Process no. 88881.284250/2018–01), the National Council for Scientific and Technological Development (CNPq), the Research Support Foundation of Minas Gerais State (FAPEMIG), and the Multi-user Biomaterials and Biomass Energy Laboratory from the Federal University of Lavras by the research support and funding.

Author information

Authors and Affiliations

Authors

Contributions

Jonas Massuque: conceptualization, formal analysis, methodology, investigation, and writing—original draft; Custódio Efraim Matavel: writing—original draft, writing—review and Editing; Thiago de Paula Protásio: validation, writing—review and editing; Paulo Fernando Trugilho: conceptualization, methodology, supervision, writing—review and editing.

Corresponding author

Correspondence to Jonas Massuque.

Ethics declarations

Ethics approval and consent to participate

Compliance with ethical standards.

Consent for publication

All authors have consent for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massuque, J., Matavel, C.E., de Paula Protásio, T. et al. Combustion performance of charcoal: a comparative study on Miombo woodland native species and Eucalyptus grandis. Biomass Conv. Bioref. 13, 15789–15798 (2023). https://doi.org/10.1007/s13399-021-02109-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02109-1

Keywords

Navigation