Skip to main content

Advertisement

Log in

Solid-state fermentation as an alternative technology for cost-effective production of bioethanol as useful renewable energy: a review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The ever-increasing population of the world, extended urbanization/industrialization in developing countries, improvements in quality of life, and increasing oil prices have accelerated the need for sustainable energy sources. Among different alternatives, biofuels in general and bioethanol in particular are promising sustainable and eco-friendly energy sources. However, cheap feedstocks and new production technologies are required to make bioethanol economically comparable with traditional fossil fuels. An efficient, cost-effective, and promising technology is solid-state fermentation (SSF) in which microorganisms grow on the surface of solid materials in the absence of free water resulting in elimination of sugar extraction process and less wastewater production, which in turn yields lower distillation and purification costs. Furthermore, SSF is a well-established technology for production of different enzymes. This potential of SSF makes it an appropriate process for enzymatic pretreatment and hydrolysis of substrates and subsequent bioethanol production. This review gives an overview of the applications of SSF in every step of bioethanol production; compares its efficiency and feasibility with the submerged fermentation process; and for brevity of exposition, highlights the great promise of this technology for sustainable and cost-effective bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SSF:

Solid-state fermentation

SmF:

Submerged fermentation

IEO:

International Energy Outlook

EIA:

Energy Information Administration

WTI:

West Texas Intermediate

CCSSF:

Consolidated continuous solid-state fermentation

LiP:

Lignin peroxidase

MnP:

Manganese peroxidase

CMCase:

Carboxy methyl cellulase

FPu:

Filter paper unit

IU:

International unit

References

  1. EIA (2019) International Energy Outlook 2019 (IEO 2019). US Energy Information Administration, https://www.eia.gov/todayinenergy/detail.php?id=43395

  2. EIA (2021) U.S. Energy Information Administration. https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=RBRTE&f=M

  3. EIA (2021) U.S. Energy Information Administration https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=pet&s=rwtc&f=a.

  4. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Conversion Management 52:858–875

    Article  Google Scholar 

  5. Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44:13–18

    Article  Google Scholar 

  6. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    Article  Google Scholar 

  7. RFA (2017) RFA analysis of public and private data sources. Renewable Fuels Association http://www.ethanolrfa.org/resources/industry/statistics/#1454099103927-1454099103961e1454099103598f1454099103927-1454099107643

  8. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic material for ethanol production: a review. Bioresour Technol 83:1–11

    Article  Google Scholar 

  9. Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable Sustainable Energy Reviews 14:1037–1047

    Article  Google Scholar 

  10. Dragone G, Fernandes B, Vicente AA, Teixeira JA. Third generation biofuels from microalgae. In: Mendez-Vilas A, editor. Curent research, technology and education topics in applied microbiology and microbial biotechnology: FORMATEX; 2010. p. 1355–1366

  11. Chen H, Qiu W (2010) Key technologies for bioethanol production from lignocellulose. Biotechnol Advances 28:556–562

    Article  Google Scholar 

  12. Soccol CR, Costa ESFd, Letti LAJ, Karp SG, Woiciechowski AL, Vandenberghe LPdS (2017) Recent developments and innovations in solid statefermentation. Biotechnology Research and Innovation https://doi.org/10.1016/j.biori.2017.01.002.

  13. Pandey A, Larroche C, Soccol CR (2008) General considerations about solid-state fermentation processes. In: Pandey A, Soccol CR, Larroche C, editors. Current developments in solid-state fermentation. New Delhi: Springer Science

  14. Barrios-González J (2012) Solid-state fermentation: physiology of solid medium, its molecular basis and applications. Process Biochem 47:175–185

    Article  Google Scholar 

  15. Wang L, Yang S-T (2007) Solid state fermentation and its applications. In: Yang S-T, editor. Bioprocessing for value-added products from renewable resources: Elsevier B.V. p. 465–489

  16. Mitchell DA, Meien OFv, Krieger N, (2003) Recent developments in modeling of solid-state fermentation: heat and mass transfer in bioreactors. Biochem Eng J 13:137–147

    Article  Google Scholar 

  17. Mitchell DA, Meien OFV, Krieger N, Dalsenter FDH (2004) A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochem Eng J 17:15–26

    Article  Google Scholar 

  18. Hamidi-Esfahani Z, Shojaosadati SA, Rinzemab A (2004) Modelling of simultaneous effect of moisture and temperature on A. niger growth in solid-state fermentation. Biochem Eng J 21:265–272

    Article  Google Scholar 

  19. Hamidi-Esfahani Z, Hejazi P, Shojaosadati SA, Hoogschagen M, Vasheghani-Farahani E, Rinzema A (2007) A two-phase kinetic model for fungal growth in solid-state cultivation. Biochem Eng J 36:100–107

    Article  Google Scholar 

  20. Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186

    Article  Google Scholar 

  21. Couto SR, Sanroman MA (2006) Application of solid-state fermentation to food industry—a review. J Food Eng 76:291–302

    Article  Google Scholar 

  22. Holker U, Lenz J (2005) Solid-state fermentation — are there any biotechnological advantages? Curr Opin Microbiol 8:301–306

    Article  Google Scholar 

  23. dosSantos MM, daRosa AS, Dal’Boit S, Mitchell DA, Krieger N, (2004) Thermal denaturation: is solid-state fermentation really a good technology for the production of enzymes? Bioresour Technol 93:261–268

    Article  Google Scholar 

  24. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  Google Scholar 

  25. Wan C, Li Y (2010) Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresour Technol 101:6398–6403

    Article  Google Scholar 

  26. Hatakka A (1983) Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose. European J Appl Microbiol Biotechnol 18:350–357

    Article  Google Scholar 

  27. Sawada T, Nakamura Y, Kobayashi F, Kuwahara M, Watanabe T (1995) Effects of fungal pretreatment and steam explosion on enzymatic saccharification of plant biomass. Biotechnol Bioeng 48:719–724

    Article  Google Scholar 

  28. Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Bioscience Bioeng 100:637–643

    Article  Google Scholar 

  29. Keller FA, Hamilton JE, Nguyen QA (2003) Microbial pretreatment of biomass potential for reducing severity of thermo-chemical biomass pretreatment. Appl Biochem Biotechnol 105:27–41

    Article  Google Scholar 

  30. Shi J, R. Sharma-Shivappa R, MariChinn, Howell N, (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass bioenergy 33:88–96

    Article  Google Scholar 

  31. Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98:3000–3011

    Article  Google Scholar 

  32. Panagiotou G, Olavarria R, Olsson L (2007) Penicillium brasilianum as an enzyme factory; the essential role of feruloyl esterases for the hydrolysis of the plant cell wall. J Biotechnol 130:219–228

    Article  Google Scholar 

  33. Dinis MJ, Bezerra RMF, Nunes F, Dias AA, Guedes CV, Ferreira LMM et al (2009) Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresour Technol 100:4829–4835

    Article  Google Scholar 

  34. Elisashvili V, Penninckx M, Kachlishvili E, Tsiklauri N, Metreveli E, Kharziani T et al (2008) Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresour Technol 99:457–462

    Article  Google Scholar 

  35. Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  Google Scholar 

  36. Srebotnik E, Messner K, Foisner R (1988) Penetrability of white rot-degraded pine wood by the lignin peroxidase of Phanerochaete chrysosporium. Appl Environ Microbiol 54:2608–2614

    Article  Google Scholar 

  37. Hammel KE, Kapich AN, Jensen KA, Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb Technol 30:445–453

    Article  Google Scholar 

  38. Fackler K, Gradinger C, Hinterstoisser B, Messner K, Schwanninger M (2006) Lignin degradation by white rot fungi on spruce wood shavings during short-time solid-state fermentations monitored by near infrared spectroscopy. Enzyme Microbial Technol 39:1476–1483

    Article  Google Scholar 

  39. Salvachúa D, Prieto A, López-Abelairas M, Lu-Chau T, Martínez ÁT, Martínez MJ (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol 102:7500–7506

    Article  Google Scholar 

  40. Dias AA, Freitas GS, Marques GSM, Sampaio A, Fraga IS, Rodrigues MAM et al (2010) Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresour Technol 101:6045–6050

    Article  Google Scholar 

  41. Shrestha P, Rasmussen M, Khanal SK, Pometto AL, VanLeeuwen JH (2008) Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol. J Agric Food Chem 56:3918–3924

    Article  Google Scholar 

  42. Xu C, Ma F, Zhang X (2009) Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover. J Bioscience Bioeng 108:372–375

    Article  Google Scholar 

  43. Ma F, Yang N, Xu C, Yu H, Wu J, Zhang X (2010) Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour Technol 101:9600–9604

    Article  Google Scholar 

  44. Rabinovich ML, Melnik MS, Boloboba AV (2002) Microbial cellulases (review). Appl Biochem Microbiol 38:305–321

    Article  Google Scholar 

  45. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  Google Scholar 

  46. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microbial Technol 46:541–549

    Article  Google Scholar 

  47. Sukumaran RK, Singhania RR, Mathew GM, Pandey A (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renewable Energy 34:421–424

    Article  Google Scholar 

  48. Tengerdy RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13:169–179

    Article  Google Scholar 

  49. Tengerdy RP (1996) Cellulase production by solid substrate fermentation. J Sci Ind Res 55:313–316

    Google Scholar 

  50. Lever M, Ho G, Cord-Ruwisch R (2010) Ethanol from lignocellulose using crude unprocessed cellulase from solid-state fermentation. Bioresour Technol 101:7083–7087

    Article  Google Scholar 

  51. Chahal DS (1985) Solid-state fermentation with Trichoderma reesei for cellulase production. Appl Environ Microbiol 49:205–210

    Article  Google Scholar 

  52. Dutta T, Sahoo R, Sengupta R, Ray SS, Bhattacharjee A, Ghosh S (2008) Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization. J Ind Microbiol Biotechnol 35:275–282

    Article  Google Scholar 

  53. Tsao GT, Xia L, Cao N, Gong CS (2000) Solid-state fermentation with Aspergillus niger for cellobiase production. Appl Biochem Biotechnol 84–86:743–749

    Article  Google Scholar 

  54. Krishna C (1999) Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresour Technol 69:231–239

    Article  Google Scholar 

  55. Heck JX, Hertz PF, Ayub MAZ (2002) Cellulase and xylanase production by isolated Amazon bacillus strains using soybean industrial residue based solid-state cultivation. Braz J Microbiol 33:213–218

    Article  Google Scholar 

  56. Yang YH, Wang BC, Wang QH, Xiang LJ, Duan CR (2004) Research on solid-state fermentation on rice chaff with amicrobial consortium. Colloids Surf B: Biointerf 34:1–6

    Article  Google Scholar 

  57. Fujian X, Hongzhang C, Zuohu L (2002) Effect of periodically dynamic changes of air on cellulase production in solid-state fermentation. Enzyme Microb Technol 30:45–48

    Article  Google Scholar 

  58. Kalogeris E, Fountoukides G, Kekos D, Macris BJ (1999) Design of a solid-state bioreactor for thermophilic microorganisms. Bioresour Technol 67:313–315

    Article  Google Scholar 

  59. Xia L, Cen P (1999) Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry. Process Biochem 34:909–912

    Article  Google Scholar 

  60. Singhania RR, Sukumaran RK, Pandey A (2007) Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Appl Biochem Biotechnol 142:60–70

    Article  Google Scholar 

  61. Gao J, Weng H, Zhu D, Yuan M, Guan F, Xi Y (2008) Production and characterization of cellulolytic enzymes from the thermoacidophilic fungus Aspergillus terreus M11 under solid-state fermentation of corn stover. Bioresour Technol 99:7623–7629

    Article  Google Scholar 

  62. Panagiotou G, Kekos M, Macris BJ, Christakopoulos P (2003) Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind Crops Prod 18:37–45

    Article  Google Scholar 

  63. Alam MZ, Mamun AA, Qudsieh IY, Muyibi SA, Salleh HM, Omar NM (2009) Solid state bioconversion of oil palm empty fruit bunches for cellulase enzyme production using a rotary drum bioreactor. Biochem Eng J 46:61–64

    Article  Google Scholar 

  64. Kalogeris E, Iniotaki F, Topakas E, Christakopoulos P, Kekos D, Macris BJ (2003) Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. Bioresour Technol 86:207–213

    Article  Google Scholar 

  65. Dhillon GS, Oberoi HS, Kaur S, Bansal S, Brar SK (2011) Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind Crops Products 34:1160–1167

    Article  Google Scholar 

  66. Long C, Ou Y, Guo P, Li Y, Cui J, Long M et al (2009) Cellulase production by solid state fermentation using bagasse with Penicillium decumbens L-06. Annals of Microbiology 59:517–523

    Article  Google Scholar 

  67. Acharya BK, Mohana S, Jog R, Divecha J, Madamwar D (2010) Utilization of anaerobically treated distillery spent wash for production of cellulases under solid-state fermentation. J Environmental Management 91:2019–2027

    Article  Google Scholar 

  68. Liu Y-T, Luo Z-Y, Long C-N, Wang H-D, Long M-N, Hu Z (2011) Cellulase production in a new mutant strain of Penicillium decumbens ML-017 by solid state fermentation with rice bran. New Biotechnol 28:733–737

    Article  Google Scholar 

  69. Mekala NK, Singhania RR, Sukumaran RK, Pandey A (2008) Cellulase production under solid-state fermentation by Trichoderma reesei RUT C30: statistical optimization of process parameters. Appl Biochem Biotechnol 151:122–131

    Article  Google Scholar 

  70. Narra M, Dixit G, Divecha J, Madamwar D, Shah AR (2012) Production of cellulases by solid state fermentation with Aspergillus terreus and enzymatic hydrolysis of mild alkali-treated rice straw. Bioresour Technol 121:355–361

    Article  Google Scholar 

  71. Oberoi HS, Chavan Y, Bansal S, Dhillon GS (2010) Production of cellulases through solid state fermentation using kinnow pulp as a major substrate. Food Bioprocess Technol 3:528–536

    Article  Google Scholar 

  72. Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102:6065–6072

    Article  Google Scholar 

  73. Dogaris I, Vakontios G, Kalogeris E, Mamma D, Kekos D (2009) Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Ind crops products 29:404–411

    Article  Google Scholar 

  74. Xiros C, Topakas E, Katapodis P, Christakopoulos P (2008) Evaluation of Fusarium oxysporum as an enzyme factory for the hydrolysis of brewer’s spent grain with improved biodegradability for ethanol production. Ind crops products 28:213–224

    Article  Google Scholar 

  75. Wang R, Godoy LC, Shaarani SM, Melikoglu M, Koutinas A, Webb C (2009) Improving wheat flour hydrolysis by an enzyme mixture from solid state fungal fermentation. Enzyme Microbial Technol 44:223–228

    Article  Google Scholar 

  76. Aswathy US, Sukumaran RK, Devi GL, Rajasree KP, Singhania RR, Pandey A (2010) Bio-ethanol from water hyacinth biomass: an evaluation of enzymatic saccharification strategy. Bioresour Technol 101:925–930

    Article  Google Scholar 

  77. Lynd LR, Weimer PJ, Zyl WHv, Pretorious IS, (2002) Microbial cellulase utilization: Fundamentals and biotechnology. Microbiology Molecular Biology Review 66:506–577

    Article  Google Scholar 

  78. Prévot V, Lopez M, Copinet E, Duchiron F (2013) Comparative performance of commercial and laboratory enzymatic complexes from submerged or solid-state fermentation in lignocellulosic biomass hydrolysis. Bioresour Technol 129:690–693

    Article  Google Scholar 

  79. Wu T-x, Wang F, Tang Q-l, Zhu Z-h (2010) Arrowroot as a novel substrate for ethanol production by solid state simultaneous saccharification and fermentation. Biomass Bioenergy 34:1159–1164

    Article  Google Scholar 

  80. Kádár Z, Szengyel Z, Réczey K (2004) Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crops Prod 20:103–110. https://doi.org/10.1016/j.indcrop.2003.12.015

    Article  Google Scholar 

  81. Mazaheri D, Orooji Y, Mazaheri M, Moghaddam MS, Karimi-Maleh H (2021) Bioethanol production from pomegranate peel by simultaneous saccharification and fermentation process. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01562-2

    Article  Google Scholar 

  82. Canabarro NI, Alessio C, Foletto EL, Kuhn RC, Priamo WL, Mazutti MA (2017) Ethanol production by solid-state saccharification and fermentation in a packed-bed bioreactor. Renewable Energy 102:9–14

    Article  Google Scholar 

  83. Estrada-Martínez R, Favela-Torres E, Soto-Cruz NO, Escalona-Buendía HB, Saucedo-Castañeda G (2019) A mild thermal pre-treatment of the organic fraction of municipal wastes allows high ethanol production by direct solid-state fermentation. Biotechnol Bioprocess Eng 24:401–412. https://doi.org/10.1007/s12257-019-0032-7

    Article  Google Scholar 

  84. Hang YD, Lee CY, Woodams EE (1982) A solid state fermentation system for production of ethanol from apple pomace. J Food Sci 47:1851–1852

    Article  Google Scholar 

  85. Hang YD, Lee CY, Woodams EE (1986) Solid-state fermentation of grape pomace for ethanol production. Biotechnol Lett 8:53–56

    Article  Google Scholar 

  86. Rodriguez LA, Toro ME, Vazquez F, Correa-Daneri ML, Gouiric SC, Vallejo MD (2010) Bioethanol production from grape and sugar beet pomaces by solid-state fermentation. Intl J Hydrogen Energy 35:5914–5917

    Article  Google Scholar 

  87. Amin G, Khalaf-Allah AM (1992) By-products formed during direct conversion of sugar beets to ethanol by Zymomonas mobilis in conventional submerged and solid-state fermentations. Biotechnol Lett 14:1187–1192

    Article  Google Scholar 

  88. Swain MR, Kar S, Sahoo AK, Ray RC (2007) Ethanol fermentation of mahula (Madhuca latifolia L.) flowers using free and immobilized yeast Saccharomyces cerevisiae. Microbiol Res 162:93–98

    Article  Google Scholar 

  89. Mohanty SK, Behera S, Swain MR, Ray RC (2009) Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation. Appl Energy 86:640–644

    Article  Google Scholar 

  90. Yu J, XuZhang TT (2008) Ethanol production by solid state fermentation of sweet sorghum using thermotolerant yeast strain. Fuel Process Technol 89:1056–1059

    Article  Google Scholar 

  91. Kargi F, Curme JA (1985) Solid-state fermentation of sweet sorghum to ethanol in a rotary-drum fermentor. Biotechnol Bioeng 27:1122–1125

    Article  Google Scholar 

  92. Kwon YJ, Wang F, Liu CZ (2011) Deep-bed solid state fermentation of sweet sorghum stalk to ethanol by thermotolerant Issatchenkia orientalis IPE 100. Bioresour Technol 102:11262–11265

    Article  Google Scholar 

  93. Bvochora JM, Read JS, Zvauya R (2000) Application of very high gravity technology to the cofermentation of sweet stem sorghum juice and sorghum grain. Ind Crops Products 11:11–17

    Article  Google Scholar 

  94. Shen F, Liu RH (2007) Stabilization of immobilized yeast and its influence on ethanol fermentation from sweet sorghum stalk juice. Trans CSAE 23:180–184

    Google Scholar 

  95. Roukas T (1993) Ethanol-production from carob pods by Saccharomyces cerevisiae. Food Biotechnol 7:159–176

    Article  Google Scholar 

  96. Roukas T (1994) Continuous ethanol-production from carob pod extract by immobilized Saccharomyces cerevisiae in a packed bed reactor. J Chem Technol Biotechnol 59:387–393

    Article  Google Scholar 

  97. Sánchez S, Lozano LJ, Godínez C, Juan D, Pérez A, Hernández FJ (2010) Carob pod as a feedstock for the production of bioethanol in Mediterranean areas. Appl Energy 87:3417–3424

    Article  Google Scholar 

  98. Turhan I, Bialka KL, Demirci A, Karhan M (2010) Ethanol production from carob extract by using Saccharomyces cerevisiae. Bioresour Technol 101:5290–5296

    Article  Google Scholar 

  99. Vaheed H, Shojaosadati SA, Galip H (2011) Evaluation and optimization of ethanol production from carob pod extract by Zymomonas mobilis using response surface methodology. J Ind Microbiol Biotechnol 38:101–111

    Article  Google Scholar 

  100. Roukas T (1994) Solid-state fermentation of carob pods for ethanol production. Appl Microbiol Biotechnol 41:296–301

    Article  Google Scholar 

  101. Mazaheri D, Shojaosadati SA, Mousavi SM, Hejazi P, Saharkhiz S (2012) Bioethanol production from carob pods by solid-state fermentation with Zymomonas mobilis. Appl Energy 99:372–378. https://doi.org/10.1016/j.apenergy.2012.05.045

    Article  Google Scholar 

  102. Ogbonna CN, Okoli EC (2010) Conversion of cassava flour to fuel ethanol by sequential solid state and submerged cultures. Process Biochem 45:1196–1200

    Article  Google Scholar 

  103. Amutha R, Gunasekaran P (2001) Production of ethanol from liquefied cassava starch using co-immobilized cells of Zymomonas mobilis and Saccharomyces diastaticus. J Biosci Bioeng 92:560–564

    Article  Google Scholar 

  104. Mazaheri D, Pirouzi A (2020) Valorization of Zymomonas mobilis for bioethanol production from potato peel: fermentation process optimization. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00834-7

    Article  Google Scholar 

  105. Liu RH, Li JX, Shen F (2005) Ethanol fermentation of sweet sorghum stalks juice by immobilized yeast. Trans CSAE 21:137–140

    Google Scholar 

  106. Kargi F, Curme JA, Sheehan JJ (1985) Solid-state fermentation of sweet sorghum to ethanol. Biotechnol Bioeng 27:34–40

    Article  Google Scholar 

  107. Prasad R, Prasad R (1991) Mahula: the tree of the poor. J Trop Forestry 7:171–179

    Google Scholar 

  108. Biner B, Gubbuk H, Karhan M, Aksu M, Pekmezci M (2007) Sugar profiles of the pods of cultivated and wild types of carob bean (Ceratoniasiliqua L.) in Turkey. Food Chem 100:1453–1455

    Article  Google Scholar 

  109. Roukas T (1996) Continuous ethanol production from non-sterilized carob pod extract by immobilized Saccharomyces cerevisiae on mineral kissiris using a two-reactor system. Appl Biochem Biotechnol 5:299–307

    Article  Google Scholar 

  110. Roukas T (1995) Ethanol production from carob pod extract by immobilized Saccharomyces cerevisiae cells on the mineral kissiris. Food Biotechnol 9:175–188

    Article  Google Scholar 

  111. Mazaheri D, Shojaosadati SA, Hejazi P, Mousavi SM (2015) Bioethanol production performance in a packed bed solid-state fermenter: evaluation of operational factors and intermittent aeration strategies. Annals of Microbiology 65:351–357

    Article  Google Scholar 

  112. Moukamnerd C, Kino-oka M, Sugiyama M, Kaneko Y, Boonchird C, Harashima S et al (2010) Ethanol production from biomass by repetitive solid-state fed-batch fermentation with continuous recovery of ethanol. Appl Microbiol Biotechnol 88:87–94

    Article  Google Scholar 

  113. Narendranath NV, Power R (2005) Relationship between pH and medium dissolved solid in terms of growth and metabolism of Lactobacilli and Saccharomyces cerevisiae during ethanol production. Appl Environ Microbiol 71:2230–2243

    Article  Google Scholar 

  114. Narendranath NV, Power R (2004) Effect of yeast inoculation rate on metabolism of contamination lactobacilli during fermentation of corn mash. J Ind Microbiol Biotechnol 31:581–584

    Article  Google Scholar 

  115. Katakura Y, Moukamnerd C, Harashima S, Kino-oka M (2011) Strategy for preventing bacterial contamination by adding exogenous ethanol in solid-state semi-continuous bioethanol production. J Biosci Bioeng 111:343–345

    Article  Google Scholar 

  116. Hejazi P, Shojaosadati SA, Hamidi-Esfahani Z, Vasheghani-Farahani E (2010) Solid state fermentation in modified Zymotis packed bed bioreactor. US Patent No 2010/0203626 A1

  117. Gibbons WR, Westby CA, Dobbs TL (1984) A continuous, farm-scale, solid-phase fermentation process for fuel ethanol and protein feed production from fodder beets. Biotechnol Bioeng 26:1098–1107. https://doi.org/10.1002/bit.260260913

    Article  Google Scholar 

  118. Gibbons WR, Westby CA (1988) Technology and economics of ethanol production from fodder beets via solid-phase fermentation. Biotech Lett 10:665–670. https://doi.org/10.1007/BF01024722

    Article  Google Scholar 

  119. Gibbons WR, Westby CA, Arnold E (1988) Semicontinuous diffusion fermentation of fodder beets for fuel ethanol and cubed protein feed production. Biotechnol Bioeng 31:696–704. https://doi.org/10.1002/bit.260310710

    Article  Google Scholar 

  120. Li S, Li G, Zhang L, Zhou Z, Han B, Hou W et al (2013) A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology. Appl Energy 102:260–265

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatemeh Karimi or Davood Mazaheri.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, F., Mazaheri, D., Saei Moghaddam, M. et al. Solid-state fermentation as an alternative technology for cost-effective production of bioethanol as useful renewable energy: a review. Biomass Conv. Bioref. (2021). https://doi.org/10.1007/s13399-021-01875-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-021-01875-2

Keywords

Navigation