Skip to main content
Log in

Supercritical carbon dioxide “explosion” on blue agave bagasse to enhance enzymatic digestibility

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Supercritical carbon dioxide (SCCO2) was employed as pretreatment of blue agave bagasse (BAB) to enhance enzymatic hydrolysis (EH) to simple sugars in preparation for bioethanol fermentation. Processing time (10–120 min), temperature (24–120 °C), and pressure (80–350 bar) were evaluated to obtain maximum total reducing sugar (TRS) after EH with commercial cellulase. Effect of water activity (aw) (0.082–0.973) of BAB was evaluated after optimum pretreatment conditions for maximum TRS (100 °C, 280 bar, and 10 min) were established. Higher values of temperature or pressure degraded simple sugars as determined by relative furan analysis. Treated samples were also characterized by scanning electronic microscopy and porosimetry, showing structural and morphological modifications that enhance enzymatic digestibility as compared to untreated controls. Processing with SCCO2 results in 40% increment in TRS compared with untreated BAB. Hydration level defined by aw resulted in the main variable affecting sugar yields, with lowest aw of pretreated BAB generating the highest TRS valued. It is proposed that at low hydration levels, diffusivity of CO2 is greater facilitating infiltration into the matrix and a more extensive deconstruction of the tight lignocellulosic matrix by explosion when pressure is released.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Henrique M, Silveira L, Morais RC, Costa M (2015) Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem. 8:3366–3390

    Article  Google Scholar 

  2. Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  Google Scholar 

  3. Akhtar N, Gupta K, Goyal D, Goyal A (2016) Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ Prog Sustain Energy 35:489–511

  4. Haghighi S, Hossein A, Tabatabaei M (2013) Lignocellulosic biomass to bioethanol , a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93

    Article  Google Scholar 

  5. Blanch HW, Simmons BA, Klein-Marcuschamer D (2011) Biomass deconstruction to sugars. Biotechnol J 6:1086–1102

    Article  Google Scholar 

  6. Gu T (2013) Pretreatment of lignocellulosic biomass using supercritical carbon dioxide as a green solvent. In: Gu T (ed) Green Biomass Pretreatment for Biofuels Production, Springer, Netherlands. pp 107–125

  7. Weber B, Sandoval-Moctezuma AC, Estrada-Maya A, Martínez-Cienfuegos IG, Durán-García MD (2020) Agave bagasse response to steam explosion and anaerobic treatment. Biomass Convers Bior 10:1279–1289

  8. Morais A, da Costa Lopes AM, Bogel-Łukasik R (2015) Carbon dioxide in biomass processing: Contributions to the green biorefinery concept. Chem Rev 115:3–27

    Article  Google Scholar 

  9. Zheng Y, Lin H, Tsao GT (1998) Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog 14:890–896

    Article  Google Scholar 

  10. Ferreira Santos AL, Fausta Kawase KY, Vieira Coelho GL (2011) Enzymatic saccharification of lignocellulosic materials after treatment with supercritical carbon dioxide. J Supercrit Fluids 56:277–282

    Article  Google Scholar 

  11. Gao M, Xu F, Li S, Ji X, Chen S, Zhang D (2010) Effect of SC-CO2 pretreatment in increasing rice straw biomass conversion. Biosyst Eng 106:470–475

    Article  Google Scholar 

  12. Liu Y, Luo P, Xu Q, Wang E, Yin J (2014) Investigation of the effect of supercritical carbon dioxide pretreatment on reducing sugar yield of lignocellulose hydrolisis. Cellul Chem Technol 48:89–95

    Google Scholar 

  13. Narayanaswamy N, Faik A, Goetz DJ, Gu T (2011) Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresour Technol 102:6995–7000

    Article  Google Scholar 

  14. Park CY, Ryu YW, Kim C (2001) Kinetics and Rate of Enzymatic Hydrolysis of Cellulose in Supercritical Carbon Dioxide. Korean J Chem Eng 18:475–478

    Article  Google Scholar 

  15. Alinia R, Zabihi S, Esmaeilzadeh F, Kalajahi JF (2010) Pretreatment of wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar production. Biosyst Eng 107:61–66

    Article  Google Scholar 

  16. Srinivasan N, Ju L-K (2010) Pretreatment of guayule biomass using supercritical carbon dioxide-based method. Bioresour Technol 101:9785–9791

    Article  Google Scholar 

  17. Serna LVD, Alzate CEO, Alzate CAC (2016) Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour Technol 199:113–120

    Article  Google Scholar 

  18. Che Hamzah NH, Markom M, Hassan O, Harun S (2015) Investigation of the effect of supercritical carbon dioxide pretreatment on sugar yield prior to enzymatic hydrolysis of empty fruit bunches. Ind Biotechnol 11:272–276

    Article  Google Scholar 

  19. Henrique M, Silveira L, Angelo B, Lucio M, Pereira L (2015) Supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and ethanol for the pretreatment and enzymatic hydrolysis of sugarcane bagasse. Bioresour Technol 192:389–396

    Article  Google Scholar 

  20. Phan DT, Tan C-S (2014) Innovative pretreatment of sugarcane bagasse using supercritical CO2 followed by alkaline hydrogen peroxide. Bioresour Technol 167:192–197

    Article  Google Scholar 

  21. Huisheng L, Miaomiao R, Minhua Z, Ying C (2013) Pretreatment of corn stover using supercritical CO2 with water-ethanol as co-solvent. Chin J Chem Eng 21:551–557

    Article  Google Scholar 

  22. Pasquini D, Pimenta MTB, Ferreira LH, Curvelo AAS (2005) Sugar cane bagasse pulping using supercritical CO 2 associated with co-solvent 1-butanol / water. J Supercrit Fluids 34:125–131

    Article  Google Scholar 

  23. Benazzi T, Calgaroto S, Astolfi V, Dalla Rosa C, Oliveira JV, Mazutti MA (2013) Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis. Enzym Microb Technol 52:247–250

    Article  Google Scholar 

  24. Yin J, Hao L, Yu W, Wang E, Zhao M, Xu Q, Liu Y (2014) Enzymatic hydrolysis enhancement of corn lignocellulose by supercritical CO2 combined with ultrasound pretreatment. Chin J Catal 35:763–769

    Article  Google Scholar 

  25. Barrera I, Amezcua-Allieri MA, Estupiñan L, Martínez T, Aburto J (2016) Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: case of sugarcane and blue agave bagasses. Chem Eng Res Des 107:91–101

    Article  Google Scholar 

  26. CRT (2018) Consumo de agave para Tequila y Tequila 100% de agave. https://www.crt.org.mx/EstadisticasCRTweb/. Accessed July 2, 2019

  27. Hernández-Salas JM, Villa-Ramírez MS, Veloz-Rendón JS, Rivera-Hernández KN, González-César RA, Plascencia-Espinosa MA, Trejo-Estrada SR (2009) Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresour Technol 100:1238–1245

    Article  Google Scholar 

  28. Aguilar DL, Rodríguez-Jasso RM, Zanuso E, de Rodríguez DJ, Amaya-Delgado L, Sanchez A, Ruiz HA (2018) Scale-up and evaluation of hydrothermal pretreatment in isothermal and non-isothermal regimen for bioethanol production using agave bagasse. Bioresour Technol 263:112–119

    Article  Google Scholar 

  29. Ávila-Lara AI, Camberos-Flores JN, Mendoza-Pérez JA, Messina-Fernández SR, Saldaña-Duran CE, Jimenez-Ruiz EI, Sánchez-Herrera LM, Pérez-Pimienta JA (2015) Optimization of alkaline and dilute acid pretreatment of agave bagasse by response surface methodology. Front Bioeng Biotechnol 3:1–10

    Article  Google Scholar 

  30. Caspeta L, Caro-Bermúdez MA, Ponce-Noyola T, Martinez A (2014) Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Appl Energy 113:277–286

    Article  Google Scholar 

  31. Flores-Gómez CA, Escamilla Silva EM, Zhong C, Dale BE, da Costa Sousa L, Balan V (2018) Conversion of lignocellulosic agave residues into liquid biofuels using an AFEXTM-based biorefinery. Biotechnol Biofuels 11:1–18

    Article  Google Scholar 

  32. Montiel C, Hernández-Meléndez O, Vivaldo-Lima E, Hernández-Luna M, Bárzana E (2016) Enhanced bioethanol production from blue agave bagasse in a combined extrusion-saccharification process. Bioenerg Res 9:1005–1014

  33. Perez-Pimienta JA, Icaza-Herrera JPA, Méndoza-Pérez JA, González-Álvarez V, Méndez-Acosta HO, Arreola-Vargas J (2019) Mild reaction conditions induce high sugar yields during the pretreatment of Agave tequilana bagasse with 1-ethyl-3-methylimidazolium acetate. Bioresour Technol 275:78–85

    Article  Google Scholar 

  34. Saucedo-Luna J, Castro-Montoya AJ, Martinez-Pachecho MM, Sosa-Aguirre CR, Campos-Garcia J (2011) Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica. J Ind Microbiol Biotechnol 38:725–732

    Article  Google Scholar 

  35. Vandenbossche V, Brault J, Vilarem G, Hernández-Meléndez O, Vivaldo-Lima E, Hernández-Luna M, Barzana E, Duque A, Manzanares P, Ballesteros M, Mata J, Castellón E, Rigal L (2014) A new lignocellulosic biomass deconstruction process combining thermo-mechano chemical action and bio-catalytic enzymatic hydrolysis in a twin-screw extruder. Ind Crop Prod 55:258–266

    Article  Google Scholar 

  36. Equihua-Sánchez M, Barahona-Pérez LF (2019) Physical and chemical characterization of Agave tequilana bagasse pretreated with the ionic liquid 1-ethyl-3-methylimidazolium acetate. Waste Biomass Valorization 10:1285–1294

  37. Luterbacher JS, Tester JW, Walker LP (2012) Two-temperature stage biphasic CO2–H2O pretreatment of lignocellulosic biomass at high solid loadings. Biotechnol Bioeng 109:1499–1507

    Article  Google Scholar 

  38. King JW, Srinivas K, Guevara O, Lu Y, Zhang D, Wang Y (2012) Reactive high pressure carbonated water pretreatment prior to enzymatic saccharification of biomass substrates. J Supercrit Fluids 66:221–231

    Article  Google Scholar 

  39. Kim KH, Hong J (2001) Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77:139–144

    Article  Google Scholar 

  40. Hernández-Meléndez O, Miguel-Cruz F, Montiel C, Hernández-Luna M, Vivaldo-Lima E, Mena-Brito C, Bárzana E (2016) Characterization of blue agave bagasse (BAB) as raw material for bioethanol production processes by gravimetric, thermal, chromatographic, X-ray diffraction, microscopy, and laser light scattering techniques. Bioenerg Res 9:985–997

  41. Fontana Jr AJ (2020) A: Water Activity of Saturated Salt Solutions. In: Barbosa-Cánovas, G (ed) Water Activity in Foods: Fundamentals and Applications, 2nd edn. Wiley & Sons Inc., pp 553–555

  42. Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO (2000) Use of UV absorbance to monitor furans in dilute acid hydrolysates of biomass. Biotechnol Prog 16:637–641

    Article  Google Scholar 

  43. Zhao M, Xu Q, Li G, Zhang Q, Zhou D, Yin J, Zhan H (2019) Pretreatment of agricultural residues by supercritical CO2 at 50–80 °C to enhance enzymatic hydrolysis. J Energy Chem 31:39–45

    Article  Google Scholar 

  44. Zhang Q, Zhao M, Xu Q, Ren H, Yin J (2019) Enhanced enzymatic hydrolysis of sorghum stalk by supercritical carbon dioxide and ultrasonic pretreatment. Appl Biochem Biotechnol 188:101–111

    Article  Google Scholar 

  45. NIST (2019) Isothermal properties of carbon dioxide. https://webbook.nist.gov/cgi/fluid.cgi?T=100&PLow=0&PHigh=350&PInc=10&Applet=on&Digits=5&ID=C124389&Action=Load&Type=IsoTherm&TUnit=C&PUnit=bar&DUnit=kg%2Fm3&HUnit=kJ%2Fmol&WUnit=m%2Fs&VisUnit=uPa*s&STUnit=N%2Fm&RefState=DEF. Accessed July 2, 2019

  46. Rosero-Henao JC, Bueno BE, de Souza R, Ribeiro R, Lopes de Oliveira A, Gomide CA, Gomes TM, Tommaso G (2019) Potential benefits of near critical and supercritical pre-treatment of lignocellulosic biomass towards anaerobic digestion. Waste Manag Res 37:74–82

    Article  Google Scholar 

  47. Acharjee TC, Coronella CJ, Vasquez VR (2011) Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresour Technol 102:4849–4854

    Article  Google Scholar 

  48. Moro S, Chipman JK, Wegener JW, Hamberger C, Dekant W, Mally A (2012) Furan in heat-treated foods: formation, exposure, toxicity, and aspects of risk assessment. Mol Nutr Food Res 56:1197–1211

    Article  Google Scholar 

  49. Jing X, Zhang X, Bao J (2009) Inhibition performance of lignocellulose degradation products on industrial cellulase enzymes during cellulose hydrolysis. Appl Biochem Biotechnol 159:696–707

    Article  Google Scholar 

  50. van Walsum GP, Shi H (2004) Carbonic acid enhancement of hydrolysis in aqueous pretreatment of corn stover. Bioresour Technol 93:217–226

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr Tatiana Klimova from Chemical Engineering Department (Facultad de Química, UNAM) for the porosimetry studies.

Funding

The author wishes to thank to Consejo Nacional de Ciencia y Tecnologia (CONACYT) for the PhD grant number 603689 to AN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Bárzana.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro, A., Montiel, C., Gracia-Fadrique, J. et al. Supercritical carbon dioxide “explosion” on blue agave bagasse to enhance enzymatic digestibility. Biomass Conv. Bioref. 13, 5691–5699 (2023). https://doi.org/10.1007/s13399-021-01557-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01557-z

Keywords

Navigation