Skip to main content
Log in

A comprehensive review on recent trends in production, purification, and applications of prodigiosin

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Increasing utilization of artificial chemical dyes as coloring agent and their associated detrimental effects on human health have instigated the search for novel natural pigments for applications in the food and pharmaceutical industries. A wide range of advancements have been recorded for utilization of naturally extracted pigments, owing to their assurance in affirmative health attentiveness in the past few decades. Therefore, it is essential to investigate various potential natural resources such as plants and microbes from where food-grade colorants can be obtained. Several drawbacks such as low water solubility, instability to light, heat, or adverse pH are associated with natural pigments extracted from plants. On the contrary, microbial pigments having higher stability and productivity are considered a potential alternative to synthetic dyes. Prodigiosin is a linear tripyrrole natural red pigment obtained from Serratia marcescens which is produced as a secondary metabolite. Prodigiosin and their derivatives act as proapoptotic agents against diverse cancer cell lines and also play a vital role in numerous cellular targets, including multi-drug resistance cells with reduced or no reported adverse side effects. Owing to its high potential in various sectors, there is an urgent need to explore and exploit the biosynthesis of prodigiosin using various biotechnological approaches. Furthermore, multifarious aspects in commercial-scale production of prodigiosin along with its contemporary utilization have been critically assessed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PG:

Prodigiosin or prodiginines.

MBC:

4-Methoxy-2-2′-bipyrrole-5-carbaldehyde

MPP:

2-Methyl-3-pentylpyrrole

HBC:

4-Hydroxyl-2,2′-bipyrrole-5-carbaldehyde

HBM:

4-Hydroxy-2,2′-bipyrrole-5-methanol

Pig:

Pigment

UV:

Ultraviolet

HCl:

Hydrogen chloride

Pig clusters:

(pigN, pigA, pigF, pigM, pigE, pigJ, pigH, pigD, pigB, pigBC)-two

Red H:

Undecylprodigiosin

Hap C:

Prodigiosin

Rph H:

Prodigiosin R1

Tam Q:

Tambjamine YPI

YP 1:

Pseudoalteromonas tunicate

Tam:

Tambjamine producer

Rph:

Roseophilin producer

LD50 :

Lethal dose 50%

DMSO:

Dimethyl sulfoxide

QSAR:

Quantitative structure-activity relationship

TRAIL:

TNF-related apoptosis inducing ligand

CP-MLR:

Combinatorial protocol in multiple linear regression

Caspase:

Cysteine-aspartate proteases family

Bcl-2:

B cell lymphoma 2

Fas:

FS-7 associated surface antigen

TLC:

Thin layer chromatography

TNF:

Tumor necrosis factor

HPLC:

High-performance liquid chromatography

NMR:

Nuclear magnetic resonance

GC-MS:

Gas chromatography mass spectrophotometer

MS:

Mass spectrophotometer

FTIR:

Fourier-transform infrared spectrophotometer

DCW:

Dry cell weight

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

ABTS:

2,2′-Azino-bis 3-ethylbenzthiazoline-6-sulfonic acid

YPI:

Pseudoalteromonas tunicata

REDL:

RED Q, AFA, etc.

DNA:

Di-oxy ribonucleic acid

TAM H:

Tambjamine H

TAM Q:

Tambjamine Q

RNA:

Ribonucleic acid

ABTS:

2,2-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)

GvHD:

Graft versus host disease

IUPAC:

International Union of Pure and Applied Chemistry

LC-HRMS:

Liquid chromatography-high-resolution mass spectrometry

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

MRSA:

Methicillin-resistant Staphylococcus aureus

ATP:

Adenosine triphosphate

CP-MLR:

Combinatorial protocol in multiple linear regressions

IPTG:

Isopropyl-β-d-thiogalactoside

HEp-2:

Laryngeal epidermoid carcinoma

HL-60:

Human promyelocytic leukemia

NCIH-292:

Lung mucoepidermoid carcinoma

MCF-7:

Breast adenocarcinoma cell lines

HepG2:

The human liver cancer cell

A549:

Human lung carcinoma

K562:

Human bone marrow chronic

B-CLL:

B cell chronic lymphocytic leukemia

U937:

Human Caucasian histiocytic lymphoma derived from malignant cells

IMR-32:

A human neuroblastoma cell line

MCF-7:

MCF-7 is a breast cancer cell line isolated in 1970 from a 69-year-old Caucasian woman

DLD-1:

One of four colorectal adenocarcinoma cell

SW-620:

SW-620 cell line expresses carcinoembryonic antigen

P27 :

Cyclin-dependent kinase inhibitor 1B (p27Kip1) is an enzyme inhibitor that in humans is encoded by the CDKN1B gene

P53 :

p53, also known as TP53 or tumour protein (EC: 2.7. 1.37) is a gene that codes for a protein that regulates the cell cycle and hence functions as a tumour suppression

P73 :

p73 (encoded by TP73 gene) is a p53-related protein that functions as a transcriptional factor

P38 :

P38 mitogen–activated protein kinases

P38 MAP Kinase (MAPK):

also called RK or CSBP (cytokinin-specific binding protein), is the mammalian orthologue of the yeast Hog1p MAP kinase, which participates in a signaling cascade controlling cellular responses to cytokines and stress

Cdk 2:

Cyclin-dependent kinase 2

PKC:

Protein kinase C

MAPK:

Mitogen-activated protein kinase

PTP1B:

Protein-tyrosine phosphatase 1B

PP2A:

Protein phosphatase 2

JNK:

Jun N-terminal kinase

RAD 51:

RAD51 gene provides instructions for making a protein that is essential for repairing damaged DNA

c-Jun:

It is a protein that in humans is encoded by the JUN gene

∆Np73:

Np73-α synergizes with specificity protein (Sp1)

mTORC1/2:

Mammalian target of rapamycin

PI3K-p85:

Phosphoinositide 3-kinases

SKP2:

S-Phase kinase-associated protein 2

PKB:

Protein kinase B

HL60:

Human acute promyelocytic leukemia

Hep G2:

Human hepatocellular carcinoma

HCT 116:

Human colorectal carcinoma

H23-SK-MEL-5:

SK-MEL-5 is one of a series of melanoma cell lines established from patient-derived tumor samples

References

  1. Darshan N, Manonmani H (2015) Prodigiosin and its potential applications. J Food Sci Technol 52(9):5393–5407. https://doi.org/10.1007/s13197-015-1740-4

    Article  Google Scholar 

  2. Sen T, Barrow CJ, Deshmukh SK (2019) Microbial pigments in the food industry—challenges and the way forward. Front Nutr 6. https://doi.org/10.3389/fnut.2019.00007

  3. Dilrukshi PT, Munasinghe H, Silva ABG, De Silva PGSM (2019) Identification of synthetic food colours in selected confectioneries and beverages in Jaffna District, Sri Lanka. J Food Qual 2019. https://doi.org/10.1155/2019/7453169

  4. Panesar R, Kaur S, Panesar PS (2015) Production of microbial pigments utilizing agro-industrial waste: a review. Curr Opin Food Sci 1:70–76. https://doi.org/10.1016/j.cofs.2014.12.002

    Article  Google Scholar 

  5. Sánchez-Contreras A, Jiménez M, Sanchez S (2000) Bioconversion of lutein to products with aroma. Appl Microbiol Biotechnol 54(4):528–534. https://doi.org/10.1007/s002530000403

    Article  Google Scholar 

  6. Lin S-R, Chen Y-H, Tseng F-J, Weng C-F (2020) The production and bioactivity of prodigiosin: quo vadis? Drug Discov Today. https://doi.org/10.1016/j.drudis.2020.03.017

  7. Venil CK, Aruldass CA, Dufossé L, Zakaria ZA, Ahmad WA (2014) Current perspective on bacterial pigments: emerging sustainable compounds with coloring and biological properties for the industry–an incisive evaluation. RSC Adv 4(74):39523–39529. https://doi.org/10.1039/C4RA06162D

    Article  Google Scholar 

  8. Abdullah N, Sekak KA, Ahmad M, Effendi TB (2014) Characteristics of electrospun PVA-Aloe vera nanofibres produced via electrospinning. In: Proceedings of the international colloquium in textile engineering, fashion, apparel and design 2014 (ICTEFAD 2014). Springer, pp 7–11. https://doi.org/10.1007/978-981-287-011-7

  9. Nagpal N, Munjal N, Chatterjee S (2011) Microbial pigments with health benefits-a mini review. Trends Biosci 4(2):157–160. https://doi.org/10.1007/s13205-018-1227-x

    Article  Google Scholar 

  10. Sakai-Kawada FE, Ip CG, Hagiwara KA, Awaya JD (2019) Biosynthesis and bioactivity of prodiginine analogues in marine bacteria, Pseudoalteromonas: a mini review. Front Microbiol 10:1715. https://doi.org/10.3389/fmicb.2019.01715

    Article  Google Scholar 

  11. Casullo de Araújo HW, Fukushima K, Takaki GMC (2010) Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low cost substrate. Molecules 15(10):6931–6940. https://doi.org/10.3390/molecules15106931

    Article  Google Scholar 

  12. Stankovic N, Radulovic V, Petkovic M, Vuckovic I, Jadranin M, Vasiljevic B, Nikodinovic-Runic J (2012) Streptomyces sp. JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties. Appl Microbiol Biotechnol 96(5):1217–1231. https://doi.org/10.1007/s00253-012-4237-3

    Article  Google Scholar 

  13. Harris AK, Williamson NR, Slater H, Cox A, Abbasi S, Foulds I, Simonsen HT, Leeper FJ, Salmond GP (2004) The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species-and strain-dependent genome context variation. Microbiology 150(11):3547–3560. https://doi.org/10.1099/mic.0.27222-0

    Article  Google Scholar 

  14. Hu DX, Withall DM, Challis GL, Thomson RJ (2016) Structure, chemical synthesis, and biosynthesis of prodiginine natural products. Chem Rev 116(14):7818–7853. https://doi.org/10.1021/acs.chemrev.6b00024

    Article  Google Scholar 

  15. Setiyono E, Adhiwibawa MAS, Indrawati R, Prihastyanti MNU, Shioi Y, Brotosudarmo THP (2020) An Indonesian marine bacterium, Pseudoalteromonas rubra, produces antimicrobial prodiginine pigments. ACS Omega 5(9):4626–4635. https://doi.org/10.1021/acsomega.9b04322

    Article  Google Scholar 

  16. de Rond T, Stow P, Eigl I, Johnson RE, Chan LJG, Goyal G, Baidoo EE, Hillson NJ, Petzold CJ, Sarpong R (2017) Oxidative cyclization of prodigiosin by an alkylglycerol monooxygenase-like enzyme. Nat Chem Biol 13(11):1155. https://doi.org/10.1038/nchembio.2471

    Article  Google Scholar 

  17. Withall DM, Haynes SW, Challis GL (2015) Stereochemistry and mechanism of undecylprodigiosin oxidative carbocyclization to streptorubin B by the rieske oxygenase RedG. J Am Chem Soc 137(24):7889–7897. https://doi.org/10.1021/jacs.5b03994

    Article  Google Scholar 

  18. Kimata S, Izawa M, Kawasaki T, Hayakawa Y (2017) Identification of a prodigiosin cyclization gene in the roseophilin producer and production of a new cyclized prodigiosin in a heterologous host. J Antibiot 70(2):196–199. https://doi.org/10.1038/ja.2016.94

    Article  Google Scholar 

  19. Vitale GA, Sciarretta M, Palma Esposito F, January GG, Giaccio M, Bunk B, Spröer C, Bajerski F, Power D, Festa C (2020) Genomics–metabolomics profiling disclosed marine vibrio spartinae 3.6 as a producer of a new branched side chain prodigiosin. J Nat Prod 83(5):1495–1504. https://doi.org/10.1021/acs.jnatprod.9b01159

    Article  Google Scholar 

  20. Sharma R, Rao MR, Ravikanth M (2017) α-Pyrrolyl dipyrrins as suitable ligands for coordination chemistry. Coord Chem Rev 348:92–120. https://doi.org/10.1016/j.ccr.2017.08.002

    Article  Google Scholar 

  21. Manas NHA, Yee CL, Tesfamariam YM, Zulkharnain A, Mahmud H, Mahmod DSA, Fuzi SFZM, Azelee NIW (2020) Effects of oil substrate supplementation on production of prodigiosin by Serratia nematodiphila for dye sensitized solar cell. J Biotechnol. https://doi.org/10.1016/j.jbiotec.2020.04.011

  22. Darshan N, Manonmani H (2016) Prodigiosin inhibits motility and activates bacterial cell death revealing molecular biomarkers of programmed cell death. AMB Express 6(1):50. https://doi.org/10.1186/s13568-016-0222-z

    Article  Google Scholar 

  23. Jehlička J, Němec I, Varnali T, Culka A, Svatoš A, Frank O, Oren A, Edwards HG (2016) The pink pigment prodigiosin: vibrational spectroscopy and DFT calculations. Dyes Pigments 134:234–243. https://doi.org/10.1016/j.dyepig.2016.07.018

    Article  Google Scholar 

  24. Ramesh C, Vinithkumar NV, Kirubagaran R, Venil CK, Dufossé L (2020) Applications of prodigiosin extracted from marine red pigmented bacteria Zooshikella sp. and Actinomycete streptomyces sp. Microorganisms 8(4):556. https://doi.org/10.3390/microorganisms8040556

    Article  Google Scholar 

  25. Suryawanshi RK, Patil CD, Borase HP, Salunke BK, Patil SV (2014) Studies on production and biological potential of prodigiosin by Serratia marcescens. Appl Biochem Biotechnol 173(5):1209–1221. https://doi.org/10.1007/s12010-014-0921-3

    Article  Google Scholar 

  26. Sumathi C, MohanaPriya D, Swarnalatha S, Dinesh MG, Sekaran G (2014) Production of prodigiosin using tannery fleshing and evaluating its pharmacological effects. Sci World J 2014:290327. https://doi.org/10.1155/2014/290327

    Article  Google Scholar 

  27. Cerdeño AM, Bibb MJ, Challis GL (2001) Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3 (2): new mechanisms for chain initiation and termination in modular multienzymes. Chem Biol 8(8):817–829. https://doi.org/10.1016/s1074-5521(01)00054-0

    Article  Google Scholar 

  28. Kim D, Lee JS, Park Y, Kim JF, Jeong H, Oh TK, Kim BS, Lee CH (2007) Biosynthesis of antibiotic prodiginines in the marine bacterium Hahella chejuensis KCTC 2396. J Appl Microbiol 102(4):937–944. https://doi.org/10.1111/j.1365-2672.2006.03172.x

    Article  Google Scholar 

  29. Burke C, Thomas T, Egan S, Kjelleberg S (2007) The use of functional genomics for the identification of a gene cluster encoding for the biosynthesis of an antifungal tambjamine in the marine bacterium Pseudoalteromonas tunicata. Environ Microbiol 9(3):814–818. https://doi.org/10.1111/j.1462-2920.2006.01177.x

    Article  Google Scholar 

  30. Kawasaki T, Sakurai F, S-y N, Hayakawa Y (2009) Prodigiosin biosynthesis gene cluster in the roseophilin producer Streptomyces griseoviridis. J Antibiot 62(5):271–276. https://doi.org/10.1038/ja.2009.27

    Article  Google Scholar 

  31. Williamson NR, Simonsen HT, Ahmed RA, Goldet G, Slater H, Woodley L, Leeper FJ, Salmond GP (2005) Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol Microbiol 56(4):971–989. https://doi.org/10.1111/j.1365-2958.2005.04602.x)

    Article  Google Scholar 

  32. Jung H-J, Ho J-K (2006) Chemical genomics with natural products. J Microbiol Biotechnol 16(5):651–660. https://doi.org/10.1016/s1074-5521(02)00100-x

    Article  MathSciNet  Google Scholar 

  33. Stanley AE, Walton LJ, Zerikly MK, Corre C, Challis GL (2006) Elucidation of the Streptomyces coelicolor pathway to 4-methoxy-2, 2′-bipyrrole-5-carboxaldehyde, an intermediate in prodiginine biosynthesis. Chem Commun 38:3981–3983. https://doi.org/10.1039/b609556a

    Article  Google Scholar 

  34. Mo S, Sydor PK, Corre C, Alhamadsheh MM, Stanley AE, Haynes SW, Song L, Reynolds KA, Challis GL (2008) Elucidation of the Streptomyces coelicolor pathway to 2-undecylpyrrole, a key intermediate in undecylprodiginine and streptorubin B biosynthesis. Chem Biol 15(2):137–148. https://doi.org/10.1016/j.chembiol.2007.11.015

    Article  Google Scholar 

  35. Schloss PD, Allen HK, Klimowicz AK, Mlot C, Gross JA, Savengsuksa S, McEllin J, Clardy J, Ruess RW, Handelsman J (2010) Psychrotrophic strain of Janthinobacterium lividum from a cold Alaskan soil produces prodigiosin. DNA Cell Biol 29(9):533–541. https://doi.org/10.1089/dna.2010.1020

    Article  Google Scholar 

  36. Domröse A, Klein A, Hage-Hülsmann J, Thies S, Svensson V, Classen TPJ, Jaeger JE, Drepper T, Loeschcke A (2015) Efficient recombinant production of prodigiosin in Pseudomonas putida. Front Microbiol 6:972. https://doi.org/10.3389/fmicb.2015.00972

    Article  Google Scholar 

  37. Chen W-C, Tsai M-J, Soo P-C, Wang L-F, Tsai S-L, Chang Y-K, Wei Y-H (2018) Construction and co-cultivation of two mutant strains harboring key precursor genes to produce prodigiosin. J Biosci Bioeng 126(6):783–789. https://doi.org/10.1016/j.jbiosc.2018.06.010

    Article  Google Scholar 

  38. Kwon S-K, Park Y-K, Kim JF (2010) Genome-wide screening and identification of factors affecting the biosynthesis of prodigiosin by Hahella chejuensis, using Escherichia coli as a surrogate host. Appl Environ Microbiol 76(5):1661–1668. https://doi.org/10.1128/AEM.01468-09

    Article  Google Scholar 

  39. Klein AS, Domröse A, Bongen P, Brass HU, Classen T, Loeschcke A, Drepper T, Laraia L, Sievers S, Jaeger K-E (2017) New prodigiosin derivatives obtained by mutasynthesis in Pseudomonas putida. ACS Synth Biol 6(9):1757–1765. https://doi.org/10.1021/acssynbio.7b00099

    Article  Google Scholar 

  40. Klein AS, Brass HUC, Klebl DP, Classen T, Loeschcke A, Drepper T, Sievers S, Jaeger KE, Pietruszka J (2018) Preparation of cyclic prodiginines by mutasynthesis in Pseudomonas putida KT2440. ChemBioChem 19(14):1545–1552. https://doi.org/10.1002/cbic.201800154

    Article  Google Scholar 

  41. You Z, Zhang S, Liu X, Wang Y (2018) Enhancement of prodigiosin synthetase (PigC) production from recombinant Escherichia coli through optimization of induction strategy and media. Prep Biochem Biotechnol 48(3):226–233. https://doi.org/10.1080/10826068.2017.1421965

    Article  Google Scholar 

  42. Liu P, Zhu H, Zheng G, Jiang W, Lu Y (2017) Metabolic engineering of Streptomyces coelicolor for enhanced prodigiosins (RED) production. Sci China Life Sci 60(9):948–957. https://doi.org/10.1007/s11427-017-9117-x

    Article  Google Scholar 

  43. Pan X, Sun C, Tang M, Liu C, Zhang J, You J, Osire T, Sun Y, Zhao Y, Xu M (2019) Loss of serine-type D-Ala-D-Ala carboxypeptidase DacA enhances prodigiosin production in Serratia marcescens. Front Bioeng Biotechnol 7:367. https://doi.org/10.3389/fbioe.2019.00367

    Article  Google Scholar 

  44. Giri AV, Anandkumar N, Muthukumaran G, Pennathur G (2004) A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiol 4(1):11. https://doi.org/10.1186/1471-2180-4-11

    Article  Google Scholar 

  45. Wei Y-H, Chen W-C (2005) Enhanced production of prodigiosin-like pigment from Serratia marcescens SMΔR by medium improvement and oil-supplementation strategies. J Biosci Bioeng 99(6):616–622. https://doi.org/10.1263/jbb.99.616

    Article  Google Scholar 

  46. Cang S, Sanada M, Johdo O, Ohta S, Nagamatsu Y, Yoshimoto A (2000) High production of prodigiosin by Serratia marcescens grown on ethanol. Biotechnol Lett 22(22):1761–1765. https://doi.org/10.1023/A:1005646102723

    Article  Google Scholar 

  47. Siva R, Subha K, Bhakta D, Ghosh A, Babu S (2012) Characterization and enhanced production of prodigiosin from the spoiled coconut. Appl Biochem Biotechnol 166(1):187–196. https://doi.org/10.1007/s12010-011-9415-8

    Article  Google Scholar 

  48. Hejazi A, Falkiner F (1997) Serratia marcescens. J Med Microbiol 46(11):903–912. https://doi.org/10.1099/00222615-46-11-903

    Article  Google Scholar 

  49. Lin C, Jia X, Fang Y, Chen L, Zhang H, Lin R, Chen J (2019) Enhanced production of prodigiosin by Serratia marcescens FZSF02 in the form of pigment pellets. Electron J Biotechnol 40:58–64. https://doi.org/10.1016/j.ejbt.2019.04.007

    Article  Google Scholar 

  50. Elkenawy NM, Yassin AS, Elhifnawy HN, Amin MA (2017) Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation. Biotechnol Rep 14:47–53. https://doi.org/10.1016/j.btre.2017.04.001

    Article  Google Scholar 

  51. J-l T, Wang X-d, Shen Y-l, D-z W (2005) Strategy for the improvement of prodigiosin production by a Serratia marcescens mutant through fed-batch fermentation. World J Microbiol Biotechnol 21(6-7):969–972. https://doi.org/10.1007/s11274-004-7257

    Article  Google Scholar 

  52. Nguyen VB, Chen S-P, Nguyen TH, Nguyen MT, Tran TTT, Doan CT, Tran TN, Nguyen AD, Kuo Y-H, Wang S-L (2020) Novel efficient bioprocessing of marine chitins into active anticancer prodigiosin. Mar Drugs 18(1):15. https://doi.org/10.3390/md18010015

    Article  Google Scholar 

  53. Romanowski EG, LEHNER KM, Martin NC, Patel KR, Callaghan JD, Stella NA, Shanks RM (2019) Thermoregulation of prodigiosin biosynthesis by Serratia marcescens is controlled at the transcriptional level and requires HexS. Pol J Microbiol 68(1):43. https://doi.org/10.21307/pjm-2019-005

    Article  Google Scholar 

  54. Haddix PL, Shanks RM (2018) Prodigiosin pigment of Serratia marcescens is associated with increased biomass production. Arch Microbiol 200(7):989–999. https://doi.org/10.1007/s00203-018-1508-0

    Article  Google Scholar 

  55. Haddix PL, Shanks RM (2020) Production of prodigiosin pigment by Serratia marcescens is negatively associated with cellular ATP levels during high-rate, low cell density growth. Can J Microbiol. https://doi.org/10.1139/cjm-2019-0548

  56. Guryanov I, Karamova N, Yusupova D, Gnezdilov O, Koshkarova L (2013) Bacterial pigment prodigiosin and its genotoxic effect. Russ J Bioorg Chem 39(1):106–111. https://doi.org/10.1134/S1068162012060040

    Article  Google Scholar 

  57. Arivizhivendhan K, Mahesh M, Boopathy R, Sekaran G (2016) A novel method for the extraction of prodigiosin from bacterial fermenter integrated with sequential batch extraction reactor using magnetic iron oxide. Process Biochem 51(10):1731–1737. https://doi.org/10.1016/j.procbio.2016.07.012

    Article  Google Scholar 

  58. Juang R-S, Yeh C-L (2014) Adsorptive recovery and purification of prodigiosin from methanol/water solutions of Serratia marcescens fermentation broth. Biotechnol Bioprocess Eng 19(1):159–168. https://doi.org/10.1007/s12257-013-0547-2

    Article  Google Scholar 

  59. Juang R-S, Chen H-L, Lin Y-C (2012) Ultrafiltration of coagulation-pretreated Serratia marcescens fermentation broth: flux characteristics and prodigiosin recovery. Sep Sci Technol 47(13):1849–1856. https://doi.org/10.1080/01496395.2012.665117

    Article  Google Scholar 

  60. Balasubramaniam B, Alexpandi R, Darjily DR (2019) Exploration of the optimized parameters for bioactive prodigiosin mass production and its biomedical applications in vitro as well as in silico. Biocatal Agric Biotechnol 22:101385. https://doi.org/10.1016/j.bcab.2019.101385

    Article  Google Scholar 

  61. Yip C-H, Yarkoni O, Ajioka J, Wan K-L, Nathan S (2019) Recent advancements in high-level synthesis of the promising clinical drug, prodigiosin. Appl Microbiol Biotechnol 103(4):1667–1680. https://doi.org/10.1007/s00253-018-09611-z

    Article  Google Scholar 

  62. Arivizhivendhan K, Mahesh M, Boopathy R, Swarnalatha S, Mary RR, Sekaran G (2018) Antioxidant and antimicrobial activity of bioactive prodigiosin produces from Serratia marcescens using agricultural waste as a substrate. J Food Sci Technol 55(7):2661–2670. https://doi.org/10.1007/s13197-018-3188-9

    Article  Google Scholar 

  63. Chen J, Li Y, Liu F, Hou D-X, Xu J, Zhao X, Yang F, Feng X (2019) Prodigiosin promotes Nrf2 activation to inhibit oxidative stress induced by microcystin-LR in HepG2 cells. Toxins 11(7):403. https://doi.org/10.3390/toxins11070403

    Article  Google Scholar 

  64. Sajjad W, Ahmad S, Aziz I, Azam SS, Hasan F, Shah AA (2018) Antiproliferative, antioxidant and binding mechanism analysis of prodigiosin from newly isolated radio-resistant Streptomyces sp. strain WMA-LM31. Mol Biol Rep 45(6):1787–1798. https://doi.org/10.1007/s11033-018-4324-3

    Article  Google Scholar 

  65. Lazović S, Leskovac A, Petrović S, Senerovic L, Krivokapić N, Mitrović T, Božović N, Vasić V, Nikodinovic-Runic J (2017) Biological effects of bacterial pigment undecylprodigiosin on human blood cells treated with atmospheric gas plasma in vitro. Exp Toxicol Pathol 69(1):55–62. https://doi.org/10.1016/j.etp.2016.11.003

    Article  Google Scholar 

  66. Kalesperis G, Prahlad K, Lynch D (1975) Toxigenic studies with the antibiotic pigments from Serratia marcescens. Can J Microbiol 21(2):213–220. https://doi.org/10.1139/m75-030

    Article  Google Scholar 

  67. Seah S-W, Nathan S, Wan K-L (2016) Toxicity evaluation of prodigiosin from Serratia marcescens in a Caenorhabditis elegans model. In: AIP Conference Proceedings, vol 1. AIP Publishing LLC, p 020015. https://doi.org/10.1063/1.4966725

  68. Papireddy K, Smilkstein M, Kelly JX, Shweta SSM, Alhamadsheh M, Haynes SW, Challis GL, Reynolds KA (2011) Antimalarial activity of natural and synthetic prodiginines. J Med Chem 54(15):5296–5306. https://doi.org/10.1021/jm200543y

    Article  Google Scholar 

  69. Rahul S, Chandrashekhar P, Hemant B, Bipinchandra S, Mouray E, Grellier P, Satish P (2015) In vitro antiparasitic activity of microbial pigments and their combination with phytosynthesized metal nanoparticles. Parasitol Int 64(5):353–356. https://doi.org/10.1016/j.parint.2015.05.004

    Article  Google Scholar 

  70. You Z, Zhang S, Liu X, Zhang J, Wang Y, Peng Y, Wu W (2019) Insights into the anti-infective properties of prodiginines. Appl Microbiol Biotechnol 103(7):2873–2887. https://doi.org/10.1007/s00253-019-09641-1

    Article  Google Scholar 

  71. Marchal E, Smithen DA, Uddin MI, Robertson AW, Jakeman DL, Mollard V, Goodman CD, MacDougall KS, McFarland SA, McFadden GI, Thompson A (2014) Synthesis and antimalarial activity of prodigiosenes. Org Biomol Chem 12(24):4132–4142. https://doi.org/10.1039/c3ob42548g

    Article  Google Scholar 

  72. Ehrenkaufer G, Li P, Stebbins EE, Kangussu-Marcolino MM, Debnath A, White CV, Moser MS, DeRisi J, Gisselberg J, Yeh E, Wang SC, Company AH, Monti L, Caffrey CR, Huston CD, Wang B, Singh U (2020) Identification of anisomycin, prodigiosin and obatoclax as compounds with broad-spectrum anti-parasitic activity. PLoS Negl Trop Dis 14(3):e0008150. https://doi.org/10.1371/journal.pntd.0008150

    Article  Google Scholar 

  73. Patil CD, Patil SV, Salunke BK, Salunkhe RB (2011) Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi. Parasitol Res 109(4):1179–1187. https://doi.org/10.1007/s00436-011-2365-9

    Article  Google Scholar 

  74. Rahul S, Chandrashekhar P, Hemant B, Chandrakant N, Laxmikant S, Satish P (2014) Nematicidal activity of microbial pigment from Serratia marcescens. Nat Prod Res 28(17):1399–1404. https://doi.org/10.1080/14786419.2014.904310

    Article  Google Scholar 

  75. Suryawanshi RK, Patil CD, Borase HP, Narkhede CP, Salunke BK, Patil SV (2015) Mosquito larvicidal and pupaecidal potential of prodigiosin from Serratia marcescens and understanding its mechanism of action. Pestic Biochem Physiol 123:49–55. https://doi.org/10.1016/j.pestbp.2015.01.018

    Article  Google Scholar 

  76. Offret C, Desriac F, Le Chevalier P, Mounier J, Jegou C, Fleury Y (2016) Spotlight on antimicrobial metabolites from the marine bacteria Pseudoalteromonas: chemodiversity and ecological significance. Mar Drugs 14(7). https://doi.org/10.3390/md14070129

  77. Suzuki N, Ohtaguro N, Yoshida Y, Hirai M, Matsuo H, Yamada Y, Imamura N, Tsuchiya T (2015) A compound inhibits biofilm formation of Staphylococcus aureus from Streptomyces. Biol Pharm Bull 38(6):889–892. https://doi.org/10.1248/bpb.b15-00053

    Article  Google Scholar 

  78. Akin-Osanaiye B, Aruwa I, Olobayotan I (2019) Isolation of Serratia marcescens from the soil and in vitro prodigiosin production as source of antibiotic, active against oxacillin-resistant Staphylococcus aureus. South Asian J Res Microbiol:1–9. https://doi.org/10.9734/SAJRM/2019/v4i430112

  79. Zhang H, Wang H, Zheng W, Yao Z, Peng Y, Zhang S, Hu Z, Tao Z, Zheng T (2017) Toxic effects of prodigiosin secreted by Hahella sp. KA22 on harmful alga Phaeocystis globosa. Front Microbiol 8:999. https://doi.org/10.3389/fmicb.2017.00999

    Article  Google Scholar 

  80. Gerber NN (1969) Prodigiosin-like pigments from Actinomadura (Nocardia) pelletieri and Actinomadura madurae. Appl Environ Microbiol 18(1):1–3. https://doi.org/10.1139/pmc377871

    Article  MathSciNet  Google Scholar 

  81. Ibrahim D, Nazari TF, Kassim J, Lim S-H (2014) Prodigiosin-an antibacterial red pigment produced by Serratia marcescens IBRL USM 84 associated with a marine sponge Xestospongia testudinaria. J Appl Pharm Sci 4:1–6. https://doi.org/10.7324/JAPS.2014.40101

    Article  Google Scholar 

  82. Arivizhivendhan K, Mahesh M, Murali R, Mary RR, Thanikaivelan P, Sekaran G (2019) Prodigiosin–iron-oxide–carbon matrix for efficient antibiotic-resistant bacterial disinfection of contaminated water. ACS Sustain Chem Eng 7(3):3164–3175. https://doi.org/10.1021/acssuschemeng.8b05010

    Article  Google Scholar 

  83. Mekhael R, Yousif S (2009) The role of red pigment produced by Serratia marcescens as antibacterial and plasmid curing agent. J Duhok Univ 12(1):268–274. https://doi.org/10.1007/s13205-017-0979-z

    Article  Google Scholar 

  84. Berlanga M, Ruiz N, Hernandez-Borrell J, Montero T, Viñas M (2000) Role of the outer membrane in the accumulation of quinolones by Serratia marcescens. Can J Microbiol 46(8):716–722. https://doi.org/10.1007/pubmed/10941517

    Article  Google Scholar 

  85. Woodhams DC, LaBumbard BC, Barnhart KL, Becker MH, Bletz MC, Escobar LA, Flechas SV, Forman ME, Iannetta AA, Joyce MD (2018) Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microb Ecol 75(4):1049–1062. https://doi.org/10.1007/s00248-017-1095-7

    Article  Google Scholar 

  86. Suryawanshi RK, Koujah L, Patil CD, Ames JM, Agelidis A, Yadavalli T, Patil SV, Shukla D (2020) Bacterial pigment prodigiosin demonstrates a unique anti-herpesvirus activity that is mediated through inhibition of prosurvival signal transducers. J Virol. https://doi.org/10.1128/JVI.00251-20

  87. Danevčič T, Borić Vezjak M, Tabor M, Zorec M, Stopar D (2016) Prodigiosin induces autolysins in actively grown Bacillus subtilis cells. Front Microbiol 7:27. https://doi.org/10.3389/fmicb.2016.00027

    Article  Google Scholar 

  88. Ravindran A, Anishetty S, Pennathur G (2020) Molecular dynamics of the membrane interaction and localisation of prodigiosin. J Mol Graph Model:107614. https://doi.org/10.1016/j.jmgm.2020.107614

  89. Manderville R (2001) Synthesis, proton-affinity and anti-cancer properties of the prodigiosin-group natural products. Curr Med Chem Anticancer Agents 1(2):195–218. https://doi.org/10.2174/1568011013354688

    Article  Google Scholar 

  90. Williamson NR, Fineran PC, Gristwood T, Chawrai SR, Leeper FJ, Salmond GP (2007) Anticancer and immunosuppressive properties of bacterial prodiginines. Future Microbiol 2(6):605–618. https://doi.org/10.2217/17460913.2.6.605

    Article  Google Scholar 

  91. Lapenda J, Alves V, Adam M, Rodrigues M, Nascimento S (2020) Cytotoxic effect of prodigiosin, natural red pigment, isolated from Serratia marcescens UFPEDA 398. Indian J Microbiol:1–14. https://doi.org/10.1007/s12088-020-00859-6

  92. Soto-Cerrato V, Llagostera E, Montaner B, Scheffer GL, Perez-Tomas R (2004) Mitochondria-mediated apoptosis operating irrespective of multidrug resistance in breast cancer cells by the anticancer agent prodigiosin. Biochem Pharmacol 68(7):1345–1352. https://doi.org/10.1016/j.bcp.2004.05.056

    Article  Google Scholar 

  93. Llagostera E, Soto-Cerrato V, Joshi R, Montaner B, Gimenez-Bonafé P, Pérez-Tomás R (2005) High cytotoxic sensitivity of the human small cell lung doxorubicin-resistant carcinoma (GLC4/ADR) cell line to prodigiosin through apoptosis activation. Anti-Cancer Drugs 16(4):393–399. https://doi.org/10.1097/00001813-200504000-00005

    Article  Google Scholar 

  94. Baldino CM, Parr J, Wilson CJ, Ng S-C, Yohannes D, Wasserman HH (2006) Indoloprodigiosins from the C-10 bipyrrolic precursor: new antiproliferative prodigiosin analogs. Bioorg Med Chem Lett 16(3):701–704. https://doi.org/10.1016/j.bmcl.2005.10.027

    Article  Google Scholar 

  95. Kataoka T, Muroi M, Ohkuma S, Waritani T, Magae J, Takatsuki A, Kondo S, Yamasaki M, Nagai K (1995) Prodigiosin 25-C uncouples vacuolar type H+-ATPase, inhibits vacuolar acidification and affects glycoprotein processing. FEBS Lett 359(1):53–59. https://doi.org/10.1016/0014-5793(94)01446-8

    Article  Google Scholar 

  96. Francisco R, Pérez-Tomás R, Gimènez-Bonafé P, Soto-Cerrato V, Giménez-Xavier P, Ambrosio S (2007) Mechanisms of prodigiosin cytotoxicity in human neuroblastoma cell lines. Eur J Pharmacol 572(2-3):111–119. https://doi.org/10.1016/j.ejphar.2007.06.054

    Article  Google Scholar 

  97. Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Madiraju SM, Goulet D, Viallet J, Bélec L, Billot X (2007) Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci 104(49):19512–19517. https://doi.org/10.1073/pnas.0709443104

    Article  Google Scholar 

  98. Melvin MS, Tomlinson JT, Saluta GR, Kucera GL, Lindquist N, Manderville RA (2000) Double-strand DNA cleavage by copper prodigiosin. J Am Chem Soc 122(26):6333–6334. https://doi.org/10.1021/ja0000798

    Article  Google Scholar 

  99. Melvin MS, Tomlinson JT, Park G, Day CS, Saluta GR, Kucera GL, Manderville RA (2002) Influence of the A-ring on the proton affinity and anticancer properties of the prodigiosins. Chem Res Toxicol 15(5):734–741. https://doi.org/10.1021/tx025507x

    Article  Google Scholar 

  100. Hong B, Prabhu VV, Zhang S, van den Heuvel APJ, Dicker DT, Kopelovich L, El-Deiry WS (2014) Prodigiosin rescues deficient p53 signaling and antitumor effects via upregulating p73 and disrupting its interaction with mutant p53. Cancer Res 74(4):1153–1165. https://doi.org/10.1158/0008-5472.CAN-13-0955

    Article  Google Scholar 

  101. Zhao C, Qiu S, He J, Peng Y, Xu H, Feng Z, Huang H, Du Y, Zhou Y, Nie Y (2020) Prodigiosin impairs autophagosome-lysosome fusion that sensitizes colorectal cancer cells to 5-fluorouracil-induced cell death. Cancer Lett. https://doi.org/10.1016/j.canlet.2020.03.010

  102. El-Batal AI, El-Hendawy HH, Faraag AH (2017) In silico and in vitro cytotoxic effect of prodigiosin-conjugated silver nanoparticles on liver cancer cells (HepG2). Cancer Lett 98(3). https://doi.org/10.5114/bta.2017.70801

  103. Han SB, Park SH, Jeon YJ, Kim YK, Kim HM, Yang KH (2001) Prodigiosin blocks T cell activation by inhibiting interleukin-2Rα expression and delays progression of autoimmune diabetes and collagen-induced arthritis. J Pharmacol Exp Ther 299(2):415–425. https://doi.org/10.1002/pmc11602650

    Article  Google Scholar 

  104. Han SB, Park SH, Jeon YJ, Kim YK, Kim HM, Yang KH (2001) Prodigiosin blocks T cell activation by inhibiting interleukin-2Ralpha expression and delays progression of autoimmune diabetes and collagen-induced arthritis. J Pharmacol Exp Ther 299(2):415–425. https://doi.org/10.1002/pmc11602650

    Article  Google Scholar 

  105. Tomás P, Ricardo E, Montaner B (2003) Effects of the proapoptotic drug prodigiosin on cell cycle-related proteins in Jurkat T cells. Histol Histopathol 18(2):379–385. https://doi.org/10.14670/HH-18.379

    Article  Google Scholar 

  106. Montaner B, Prez-Toms R (2003) The prodigiosins: a new family of anticancer drugs. Curr Cancer Drug Targets 3(1):57–65. https://doi.org/10.2174/1568009033333772

    Article  Google Scholar 

  107. Songia S, Mortellaro A, Taverna S, Fornasiero C, Scheiber EA, Erba E, Colotta F, Mantovani A, Isetta A-M, Golay J (1997) Characterization of the new immunosuppressive drug undecylprodigiosin in human lymphocytes: retinoblastoma protein, cyclin-dependent kinase-2, and cyclin-dependent kinase-4 as molecular targets. J Immunol 158(8):3987–3995. https://doi.org/10.1002/pmc3987

    Article  Google Scholar 

  108. Soto-Cerrato V, Viñals F, Lambert JR, Kelly JA, Pérez-Tomás R (2007) Prodigiosin induces the proapoptotic gene NAG-1 via glycogen synthase kinase-3β activity in human breast cancer cells. Mol Cancer Ther 6(1):362–369. https://doi.org/10.1158/1535-7163.MCT-06-0266

    Article  Google Scholar 

  109. Sigurdson GT, Tang P, Giusti MM (2017) Natural colorants: food colorants from natural sources. Annu Rev Food Sci Technol 8:261–280. https://doi.org/10.1146/annurev-food-030216-025923

    Article  Google Scholar 

  110. Marcus JB (2013) Vitamin and mineral basics: the ABCs of healthy foods and beverages, including phytonutrients and functional foods: healthy vitamin and mineral choices, roles and applications in nutrition, food science and the culinary arts. ch. 7. Food Science and the Culinary Arts. In: Marcus JB (ed) Culinary nutrition: the science and practice of healthy cooking. Academic Press, pp 279–331. https://doi.org/10.1016/B978-0-12-391882-6.00007-8

  111. Edelmann M, Aalto S, Chamlagain B, Kariluoto S, Piironen V (2019) Riboflavin, niacin, folate and vitamin B12 in commercial microalgae powders. J Food Compos Anal 82:103226. https://doi.org/10.1016/j.jfca.2019.05.009

    Article  Google Scholar 

  112. Bogacz-Radomska L, Harasym J (2018) β-Carotene—properties and production methods. Food Qual Saf 2(2):69–74. https://doi.org/10.1093/fqsafe/fyy004

    Article  Google Scholar 

  113. Cong X-Y, Zhang H-Z (2019) Recent progress in sources, biological activity and application of astaxanthin. Int J Sci 8(03):31–34. https://doi.org/10.18483/ijSci.2011

    Article  Google Scholar 

  114. Malis SA, Cohen E, Ben Amotz A (1993) Accumulation of canthaxanthin in Chlorella emersonii. Physiol Plant 87(2):232–236. https://doi.org/10.1111/j.1399-3054.1993.tb00148.x

    Article  Google Scholar 

  115. Esatbeyoglu T, Rimbach G (2017) Canthaxanthin: from molecule to function. Mol Nutr Food Res 61(6). https://doi.org/10.1002/mnfr.201600469

  116. Lee JS, Kim YS, Park S, Kim J, Kang SJ, Lee MH, Ryu S, Choi JM, Oh TK, Yoon JH (2011) Exceptional production of both prodigiosin and cycloprodigiosin as major metabolic constituents by a novel marine bacterium, Zooshikella rubidus S1-1. Appl Environ Microbiol 77(14):4967–4973. https://doi.org/10.1128/AEM.01986-10

    Article  Google Scholar 

  117. Buchweitz M (2016) Natural solutions for blue colors in food. In: Handbook on natural pigments in food and beverages. Elsevier, pp 355–384. https://doi.org/10.1016/B978-0-08-100371-8.00017-8

  118. Erandapurathukadumana Sreedharan H, Harilal CC, Pradeep S (2020) Response surface optimization of prodigiosin production by phthalate degrading Achromobacter denitrificans SP1 and exploring its antibacterial activity. Prep Biochem Biotechnol:1–8. https://doi.org/10.1080/10826068.2020.1712659

  119. Gul S, Shad MA, Arshad R, Nawaz H, Ali A, Altaf A, Gul T, Iqbal W (2020) Response surface optimization of prodigiosin production by mutagen-treated Serratia marcescens in different growth media. Pharmacogn Mag 16(68):99. https://doi.org/10.4103/pm.pm_430_19

    Article  Google Scholar 

  120. Kimata S, Matsuda T, Suizu Y, Hayakawa Y (2018) Prodigiosin R2, a new prodigiosin from the roseophilin producer Streptomyces griseoviridis 2464-S5. J Antibiot (Tokyo) 71(3):393–396. https://doi.org/10.1038/s41429-017-0011-1

    Article  Google Scholar 

  121. Metwally RA, Nermeen A, El Sikaily A, Ghozlan HA, Sabry SA (2017) Statistical optimization and characterization of prodigiosin from a marine Serratia rubidaeaRAM_Alex. J Pure Appl Microbiol 11(3):1259–1266. https://doi.org/10.22207/JPAM.11.3.04

    Article  Google Scholar 

  122. Kurbanoglu EB, Ozdal M, Ozdal OG, Algur OF (2015) Enhanced production of prodigiosin by Serratia marcescens MO-1 using ram horn peptone. J Pure Appl Microbio 46(2):631–637. https://doi.org/10.1590/S1517-838246246220131143

  123. Gondil VS, Asif M, Bhalla TC (2017) Optimization of physicochemical parameters influencing the production of prodigiosin from Serratia nematodiphila RL2 and exploring its antibacterial activity. 3. Biotech 7(5):338. https://doi.org/10.1007/s13205-017-0979-z

    Article  Google Scholar 

  124. Xia S, Veony E, Yang Q (2018) Kitchen waste as a novel available substrate for prodigiosin production by Serratia marcescense. In: IOP Conference Series: Earth and Environmental Science, vol 1. IOP Publishing, p 012037. https://doi.org/10.1088/1755-1315/171/1/012037

  125. Liang TW, Chen SY, Chen YC, Chen CH, Yen YH, Wang SL (2013) Enhancement of prodigiosin production by Serratia marcescens TKU011 and its insecticidal activity relative to food colorants. J Food Sci 78(11):M1743–M1751. https://doi.org/10.1111/1750-3841.12272

    Article  Google Scholar 

  126. Wei YH, Chen WC (2005) Enhanced production of prodigiosin-like pigment from Serratia marcescens SMdeltaR by medium improvement and oil-supplementation strategies. J Biosci Bioeng 99(6):616–622. https://doi.org/10.1263/jbb.99.616

    Article  Google Scholar 

  127. Liu X, Wang Y, Sun S, Zhu C, Xu W, Park Y, Zhou H (2013) Mutant breeding of Serratia marcescens strain for enhancing prodigiosin production and application to textiles. Prep Biochem Biotechnol 43(3):271–284. https://doi.org/10.1080/10826068.2012.721850

    Article  Google Scholar 

  128. El-Bondkly AM, El-Gendy MM, Bassyouni RH (2012) Overproduction and biological activity of prodigiosin-like pigments from recombinant fusant of endophytic marine Streptomyces species. Antonie Van Leeuwenhoek 102(4):719–734. https://doi.org/10.1007/s10482-012-9772-5

    Article  Google Scholar 

  129. Wei YH, Yu WJ, Chen WC (2005) Enhanced undecylprodigiosin production from Serratia marcescens SS-1 by medium formulation and amino-acid supplementation. J Biosci Bioeng 100(4):466–471. https://doi.org/10.1263/jbb.100.466

    Article  Google Scholar 

  130. Montaner B, Pérez-Tomás R (2002) The cytotoxic prodigiosin induces phosphorylation of p38-MAPK but not of SAPK/JNK. Toxicol Lett 129(1-2):93–98. https://doi.org/10.1016/S0378-4274(01)00477-5

    Article  Google Scholar 

  131. Soto-Cerrato V, Vinals F, Lambert JR, Perez-Tomas R (2007) The anticancer agent prodigiosin induces p21WAF1/CIP1 expression via transforming growth factor-beta receptor pathway. Biochem Pharmacol 74(9):1340–1349. https://doi.org/10.1016/j.bcp.2007.07.016

    Article  Google Scholar 

  132. Wheler JJ, Janku F, Naing A, Li Y, Stephen B, Zinner R, Subbiah V, Fu S, Karp D, Falchook GS (2016) Cancer therapy directed by comprehensive genomic profiling: a single center study. Cancer Res 76(13):3690–3701. https://doi.org/10.1158/0008-5472

    Article  Google Scholar 

  133. Castillo-Avila W, Abal M, Robine S, Perez-Tomas R (2005) Non-apoptotic concentrations of prodigiosin (H+/Cl- symporter) inhibit the acidification of lysosomes and induce cell cycle blockage in colon cancer cells. Life Sci 78(2):121–127. https://doi.org/10.1016/j.lfs.2005.04.059

    Article  Google Scholar 

  134. Yenkejeh RA, Sam MR, Esmaeillou M (2017) Targeting survivin with prodigiosin isolated from cell wall of Serratia marcescens induces apoptosis in hepatocellular carcinoma cells. Hum Exp Toxicol 36(4):402–411. https://doi.org/10.1177/0960327116651122

    Article  Google Scholar 

  135. Chiu WJ, Lin SR, Chen YH, Tsai MJ, Leong MK, Weng CF (2018) Prodigiosin-emerged PI3K/Beclin-1-independent pathway elicits autophagic cell death in doxorubicin-sensitive and -resistant lung cancer. J Clin Med 7(10). https://doi.org/10.3390/jcm7100321

  136. Liu Y, Zhou H, Ma X, Lin C, Lu L, Liu D, Ma D, Gao X, Qian XY (2018) Prodigiosin inhibits proliferation, migration, and invasion of nasopharyngeal cancer cells. Hum Exp Toxicol 48(4):1556–1562. https://doi.org/10.1159/000492278

  137. Espona-Fiedler M, Soto-Cerrato V, Hosseini A, Lizcano JM, Guallar V, Quesada R, Gao T, Perez-Tomas R (2012) Identification of dual mTORC1 and mTORC2 inhibitors in melanoma cells: prodigiosin vs. obatoclax. Biochem Pharmacol 83(4):489–496. https://doi.org/10.1016/j.bcp.2011.11.027

    Article  Google Scholar 

Download references

Acknowledgment

The authors also acknowledge the cooperation and assistance received from the Department of Chemical engineering and Bio-engineering, National Institute of Technology, Agartala to conduct the reported study.

Funding

The authors received financial assistantship in the form of fellowship to conduct doctoral research from the National Institute of Technology and Ministry of Human Resource Development, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muthusivaramapandian Muthuraj or Biswanath Bhunia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Biosynthesis of prodigiosin and its source

• Extraction and purification of prodigiosin

• Biochemical characterization of prodigiosin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, T., Bandyopadhyay, T.K., Mondal, A. et al. A comprehensive review on recent trends in production, purification, and applications of prodigiosin. Biomass Conv. Bioref. 12, 1409–1431 (2022). https://doi.org/10.1007/s13399-020-00928-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00928-2

Keywords

Navigation