Skip to main content

Advertisement

Log in

Effect of autohydrolysis on hemicellulose extraction and pyrolytic hydrogen production from Eucalyptus urograndis

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Ensuring environmental and social-economic sustainability in the use of materials from lignocellulosic biomass requires their fractionation and valorization of their main components. In this work, we used Eucalyptus urograndis wood to obtain chemicals and energy. The raw material was characterized in chemical terms and then subjected to autohydrolysis under variable operating conditions to optimize the extraction of hemicellulose derivatives relative to cellulose. The kinetics of the pyrolysis process was modeled in terms of activation energy and hydrogen production. Using temperatures in the range of 180–190 °C and treatment times in the range of 15–30 min allowed more than 74.5% of all hemicellulosic components in the raw material to be selectively extracted into the liquid post-hydrolysis phase, more than 90% of all glucan to remain in the solid phase and up to 27.8% of lignin to be removed. The thermal behavior of solid fraction was examined by thermogravimetric analysis, using variable heating rates under a nitrogen atmosphere, and the activation energy can be estimated by using the Flynn-Wall-Ozawa method. Based on the results, the pyrolysis of E. urograndis can be modeled as a first-order reaction. The activation energy (Ea) at a fractional conversion α between 0.3 and 0.7 was 183 to 199 KJ mol−1 for the raw material, whereas that for the solid residue from autohydrolysis ranged from 179 to 186 kJ mol−1 at same fractional conversion when operational temperature in autohydrolysis was upper 185 °C. Based on the results, using temperatures above 180 °C and times of 15 min or longer [i.e., operating at the (0,0) experimental point for the autohydrolysis process] in combination with degrees of conversion from 0.3 to 0.8 reduced the activation energy of the pyrolysis process in relation to the raw material by up to 12% and removed hemicellulose by more 74.5% from it. In parallel, the comparative analysis of the Ea values and the composition of the pyrolysis gas obtained showed a negative relationship between Ea and the amount of hydrogen produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Connolly D, Lund H, Mathiesen BV (2016) Smart Energy Europe: the technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renew Sust Energ Rev 60:1634–1653. https://doi.org/10.1016/j.rser.2016.02.025

    Article  Google Scholar 

  2. GIT Forestry Consulting (2009) GIT Forestry Consulting’s blog, Global Eycalyptus Map. http://git-forestry-blog.blogspot.com/2009/10/globaleucalyptus-map-2009-in-buenos.html. Accessed 22 Jun 2017

  3. REN21 (2015) REN21, renewables 2015 global status report, renewable energy policy network for the 21st century. France

  4. Bogdanski A, Dubois O, Jamieson C, Krell R (2010) Making integrated food-energy systems work for people and climate. Rome

  5. IEA (2016) IEA, world energy outlook 2016. Paris

  6. Dahanayake KC, Chow CL, Long Hou G (2017) Selection of suitable plant species for energy efficient vertical greenery systems (VGS). Energy Procedia 142:2473–2478. https://doi.org/10.1016/j.egypro.2017.12.185

    Article  Google Scholar 

  7. FAO (2001) Future production from forest plantations, forest plantations thematic papers, working paper FP/13. Rome

  8. García-Morote FA, López-Serrano FR, Martínez-García E, Andrés-Abellán M, Dadi T, Candel D, Rubio E, Lucas-Borja M (2014) Stem biomass production of Paulownia elongata × P. fortunei under low irrigation in a semi-arid environment. Forests 5:2505–2520. https://doi.org/10.3390/f5102505

    Article  Google Scholar 

  9. Guerrero M, Ruiz MP, Alzueta MU et al (2005) Pyrolysis of eucalyptus at different heating rates: studies of char characterization and oxidative reactivity. In: Journal of Analytical and Applied Pyrolysis. Elsevier, pp 307–314

  10. Amutio M, Lopez G, Alvarez J, Olazar M, Bilbao J (2015) Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor. Bioresour Technol 194:225–232. https://doi.org/10.1016/j.biortech.2015.07.030

    Article  Google Scholar 

  11. Fernández M, Alaejos J, Andivia E, Vázquez-Piqué J, Ruiz F, López F, Tapias R (2018) Eucalyptus x urograndis biomass production for energy purposes exposed to a Mediterranean climate under different irrigation and fertilisation regimes. Biomass Bioenergy 111:22–30. https://doi.org/10.1016/j.biombioe.2018.01.020

    Article  Google Scholar 

  12. da Silva Morais AP, Sansígolo CA, de Oliveira NM (2016) Effects of autohydrolysis of Eucalyptus urograndis and Eucalyptus grandis on influence of chemical components and crystallinity index. Bioresour Technol 214:623–628. https://doi.org/10.1016/j.biortech.2016.04.124

    Article  Google Scholar 

  13. Loaiza JM, López F, García MT, Fernández O, Díaz MJ, García JC (2016) Selecting the pre-hydrolysis conditions for eucalyptus wood in a fractional exploitation biorefining scheme. J Wood Chem Technol 36:221–223. https://doi.org/10.1080/02773813.2015.1112402

    Article  Google Scholar 

  14. Feria MJ, Alfaro A, López F, Pérez A, García JC, Rivera A (2012) Integral valorization of Leucaena diversifolia by hydrothermal and pulp processing. Bioresour Technol 103:381–388. https://doi.org/10.1016/j.biortech.2011.09.100

    Article  Google Scholar 

  15. Alfaro A, López F, Pérez A, García JC, Rodríguez A (2010) Integral valorization of tagasaste (Chamaecytisus proliferus) under hydrothermal and pulp processing. Bioresour Technol 101:7635–7640. https://doi.org/10.1016/j.biortech.2010.04.059

    Article  Google Scholar 

  16. Axelsson L, Franzén M, Ostwald M, Berndes G, Lakshmi G, Ravindranath NH (2012) Perspective: Jatropha cultivation in southern India: assessing farmers’ experiences. Biofuels Bioprod Biorefin 6:246–256. https://doi.org/10.1002/bbb

    Article  Google Scholar 

  17. Basu P (2013) Biomass gasification, pyrolysis and torrefaction, 2nd edition

  18. Wu C, Wang Z, Huang J, Williams PT (2013) Pyrolysis/gasification of cellulose , hemicellulose and lignin for hydrogen production in the presence of various nickel-based catalysts. Fuel 106:697–706. https://doi.org/10.1016/j.fuel.2012.10.064

    Article  Google Scholar 

  19. Widyawati M, Church TL, Florin NH, Harris AT (2011) Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide. Int J Hydrog Energy 36:4800–4813. https://doi.org/10.1016/j.ijhydene.2010.11.103

    Article  Google Scholar 

  20. Loaiza JM, López F, García MT, García JC, Díaz MJ (2017) Biomass valorization by using a sequence of acid hydrolysis and pyrolysis processes. Application to Leucaena leucocephala. Fuel 203:393–402. https://doi.org/10.1016/j.fuel.2017.04.135

    Article  Google Scholar 

  21. Kamm B, Kamm M (2007) Biorefineries – multi product processes. Adv Biochem Eng Biotechnol

  22. Chen S, Meng A, Long Y, Zhou H, Li Q, Zhang Y (2015) TGA pyrolysis and gasification of combustible municipal solid waste. J Energy Inst 88:332–343. https://doi.org/10.1016/j.joei.2014.07.007

    Article  Google Scholar 

  23. Pecha B, Garcia-Perez M (2015) Pyrolysis of lignocellulosic biomass. In: Bioenergy. Elsevier, pp 413–442

  24. Loaiza JM, López F, García MT, García JC, Díaz MJ (2018) Integral valorization of tagasaste (Chamaecytisus proliferus) under thermochemical processes. Biomass Convers Biorefinery 8:265–274. https://doi.org/10.1007/s13399-017-0258-6

    Article  Google Scholar 

  25. Domínguez MT, Madejón P, Madejón E, Diaz MJ (2017) Novel energy crops for Mediterranean contaminated lands: valorization of Dittrichia viscosa and Silybum marianum biomass by pyrolysis. Chemosphere 186:968–976. https://doi.org/10.1016/j.chemosphere.2017.08.063

    Article  Google Scholar 

  26. Zhang W, Huang S, Wu S, Wu Y, Gao J (2019) Study on the structure characteristics and gasification activity of residual carbon in biomass ashes obtained from different gasification technologies. Fuel 254:254. https://doi.org/10.1016/j.fuel.2019.115699

    Article  Google Scholar 

  27. Sixta H (2006) Handbook of pulp. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  28. TAPPI T264-cm-07 (2007) Preparation of wood for chemical analysis. In: TAPPI Test Methods. TAPPI Press, Norcross

    Google Scholar 

  29. TAPPI T222 om-11 (2011) Acid-insoluble lignin in wood and pulp

  30. Wallis AFA, Wearne RH, Wright PJ (1996) Chemical analysis of polysaccharides in plantation eucalypt woods and pulps. Appita J 49:258–262. https://doi.org/10.5902/1980509812359

    Article  Google Scholar 

  31. Montgomery DC (2003) Diseño y análisis de experimentos. Limusa Wiley

  32. Akhnazarova S, Kafarov V (1984) Experiment optimization in chemistry and chemical engineering. Mir Publishers, Moscow

  33. Radojevic M, Balac M, Jovanovic V, Stojiljkovic D, Manic N (2018) Thermogravimetric kinetic study of solid recovered fuels pyrolysis. Hem Ind 72:99–106. https://doi.org/10.2298/HEMIND171009002R

    Article  Google Scholar 

  34. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    Article  Google Scholar 

  35. Flynn JH, Wall LA (1966) General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand Sect A Phys Chem 70A:487–523. https://doi.org/10.6028/jres.070a.043

    Article  Google Scholar 

  36. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886. https://doi.org/10.1246/bcsj.38.1881

    Article  Google Scholar 

  37. Sedjo RA (2001) The role of forest plantations in the world’s future timber supply. For Chron 77:221–225

    Article  Google Scholar 

  38. Brown C (2000) The global outlook for future wood supply from forest plantations

  39. FAO 2010 (2010) Global forest resources assessment 2010. Main Report

  40. Wise LE,Murphy M, Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper trade journal

  41. López F, Alfaro, Caparrós A et al (2008) Aprovechamiento energético e integrado por fraccionamiento de biomasa lignocelulósica forestal y agroindustrial. Caracterización de hemicelulosas, celulosas y otros productos del fraccionamiento. Boletín del CIDEU 5:7–19

    Google Scholar 

  42. Garrote G, Parajó JC (2002) Non-isothermal autohydrolysis of Eucalyptus wood. Wood Sci Technol 36:111–123. https://doi.org/10.1007/s00226-001-0132-2

    Article  Google Scholar 

  43. Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57:191–202. https://doi.org/10.1007/s001070050039

    Article  Google Scholar 

  44. Gallina G, Cabeza Á, Biasi P, García-Serna J (2016) Optimal conditions for hemicelluloses extraction from Eucalyptus globulus wood: hydrothermal treatment in a semi-continuous reactor. Fuel Process Technol 148:350–360. https://doi.org/10.1016/j.fuproc.2016.03.018

    Article  Google Scholar 

  45. Romaní A, Garrote G, López F, Parajó JC (2011) Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification. Bioresour Technol 102:5896–5904. https://doi.org/10.1016/j.biortech.2011.02.070

    Article  Google Scholar 

  46. Pontes R, Romaní A, Michelin M, Domingues L, Teixeira J, Nunes J (2018) Comparative autohydrolysis study of two mixtures of forest and marginal land resources for co-production of biofuels and value-added compounds. Renew Energy 128:20–29. https://doi.org/10.1016/j.renene.2018.05.055

    Article  Google Scholar 

  47. Poletto M, Zattera AJ, Santana RMC (2012) Thermal decomposition of wood: kinetics and degradation mechanisms. In: Bioresource technology. Elsevier Ltd, pp 7–12

  48. Sanchez-Silva L, López-González D, Villaseñor J, Sánchez P, Valverde JL (2012) Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol 109:163–172. https://doi.org/10.1016/j.biortech.2012.01.001

    Article  Google Scholar 

  49. Maliutina K, Tahmasebi A, Yu J (2018) Pressurized entrained-flow pyrolysis of microalgae: enhanced production of hydrogen and nitrogen-containing compounds. Bioresour Technol 256:160–169. https://doi.org/10.1016/j.biortech.2018.02.016

    Article  Google Scholar 

  50. Zhang Q, Shen C, Zhang S, Wu Y (2016) Steam methane reforming reaction enhanced by a novel K2CO3-doped Li4SiO4sorbent: investigations on the sorbent and catalyst coupling behaviors and sorbent regeneration strategy. Int J Hydrog Energy 41:4831–4842. https://doi.org/10.1016/j.ijhydene.2015.12.116

    Article  Google Scholar 

  51. Yang H (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. 86:1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

  52. Zhang W, Henschel T, Söderlind U et al (2017) Thermogravimetric and online gas analysis on various biomass fuels. In: Energy Procedia. Elsevier Ltd, pp 162–167

  53. Huang YF, Kuan WH, Chiueh PT, Lo SL (2011) Pyrolysis of biomass by thermal analysis-mass spectrometry (TA-MS). Bioresour Technol 102:3527–3534. https://doi.org/10.1016/j.biortech.2010.11.049

    Article  Google Scholar 

  54. Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, Sommariva S (2008) Chemical kinetics of biomass pyrolysis. Energy Fuel 22:4292–4300. https://doi.org/10.1021/ef800551t

    Article  Google Scholar 

  55. Rueda Ordóñez YJ, Tannous KK (2017) Análisis cinético de la descomposición térmica de biomasas aplicando un esquema de reacciones paralelas independientes. Rev UIS Ing 16:119–128. https://doi.org/10.18273/revuin.v16n2-2017011

    Article  Google Scholar 

  56. Suuberg EM, Peters WA, Howard JB (1978) Product composition and kinetics of lignite pyrolysis

  57. Suuberg EM, Peters WA, Howard JB, et al (1985) Proceedings, seventeenth symposium (international) on combustion; the Combustion Institute; Pittsburgh. Academic Press

Download references

Funding

This work was funded by the Andalusian Regional Government (Project FEDER Andalucía, UHU-1255540 and postdoctoral fellowship) and the Spanish Government (National Program for Research Aimed at Social Challenges, Grant No. CTQ2017-85251-C2-1-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Palma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loaiza, J.M., Palma, A., Díaz, M.J. et al. Effect of autohydrolysis on hemicellulose extraction and pyrolytic hydrogen production from Eucalyptus urograndis. Biomass Conv. Bioref. 12, 4021–4030 (2022). https://doi.org/10.1007/s13399-020-00900-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00900-0

Keywords

Navigation