Skip to main content
Log in

Combined autohydrolysis and alkali pretreatments for cellulose enzymatic hydrolysis of Eucalyptus grandis wood

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Lignocellulosic materials represent a promising low-cost and abundant raw material which does not compete with foodstuffs, but an appropriate pretreatment is required to make sugars easily available. In this work, Eucalyptus grandis wood was subjected to autohydrolysis pretreatment under mild operational conditions (6–10 g/g liquid to solid ratio, 140–160 °C, reaction times up to 150 min) in order to recover and preserve hemicelluloses, while enhancing enzyme accessibility to cellulose. The severity of the pretreatment should be chosen depending on the subsequent use of the separated products. Pretreatment at 160 °C for 150 min using a liquid to solid ratio of 6 g/g was the best condition for hemicellulose recovery (mostly as xylose) in the liquid fraction. Under these autohydrolysis pretreatment conditions, an additional alkaline pretreatment applied to the autohydrolyzed solids was evaluated in order to improve the enzymatic hydrolysis of pretreated wood. Also, the addition of surfactant was assessed in order to enhance the enzymatic hydrolysis. The highest cellulose hydrolysis was obtained in the presence of PEG 6000. For the autohydrolysis-pretreated solids, a cellulose conversion of 39% was obtained, corresponding to an overall glucose yield of 18.7 kg per 100 kg of dry raw material. Additionally, for the autohydrolysis-alkaline-pretreated solids, a cellulose conversion of 43% was achieved, which corresponds to an overall glucose yield of 15.4 kg per 100 kg of dry raw material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915–8922

    Article  Google Scholar 

  2. Emmel A, Mathias AL, Wypych F, Ramos LP (2003) Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion. Biores Technol 86:105–115

    Article  Google Scholar 

  3. Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Biores Technol 199:49–58

    Article  Google Scholar 

  4. Yu Q, Zhuang X, Yuan Z, Wang Q, Qi W, Wang W, Zhang Y, Xu J, Xu H (2010) Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Biores Technol 101:4895–4899

    Article  Google Scholar 

  5. Yu Q, Zhuang X, Wang Q, Qi W, Tan X, Yuan Z (2012) Hydrolysis of sweet sorghum bagasse and eucalyptus wood chips with liquid hot water. Biores Technol 116:220–225

    Article  Google Scholar 

  6. Cardona E, Rios J, Peña J, Rios L (2014) Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass. Fuel 118:41–47

    Article  Google Scholar 

  7. Vegas R, Kabel M, Schols HA, Alonso JL, Parajó JC (2008) Hydrothermal processing of ricehusks: effects of severity on products distribution. J Chem Technol Biotechnol 83:965–972

    Article  Google Scholar 

  8. Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X, Zhou YZ (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Biores Technol 199:68–75

    Article  Google Scholar 

  9. Garrote G, Cruz JM, Domínguez H, Parajó JC (2008) Non-isothermal autohydrolysis of barley husks: product distribution and antioxidant activity of ethyl acetate solublefractions. J Food Eng 84:544–552

    Article  Google Scholar 

  10. Carvalheiro F, Silva-Fernandes T, Duarte LC, Gírio FM (2009) Wheat straw autohydrolysis: process optimization and products characterization. Appl Biochem Biotechnol 153:84–93

    Article  Google Scholar 

  11. Almeida Carvalho E, Mendes dos Santos Góes, L, Uetanabaro APT, Paranhos da Silva EG, Brito Rodrigues L, Pirovani CP, Miura da Costa A (2016) Thermoresistant xylanases from Trichoderma stromaticum: application in bread making and manufacturing xylo-oligosaccharides. Food Chem 2016 (in press)

  12. Mussatto SI, Mancilha M (2007) Non-digestible oligosaccharides: a review. Carbohydr Polym 68:587–597

    Article  Google Scholar 

  13. Yang ZY, Wu DT, Chen CW, Cheong KL, Deng Y, Chen LX, Han BX, Chen NF, Zhao J, Li SP (2016) Preparation of xylooligosaccharides from xylan by controlled acid hydrolysis and fast protein liquid chromatography coupled with refractive index detection. Separ Purif Technol 171:151–156

    Article  Google Scholar 

  14. Garrote G, Domínguez H, Parajó JC (2001) Kinetic modelling of corncob autohydrolysis. Process Biochem 36:571–578

    Article  Google Scholar 

  15. Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 46:25–35

    Article  Google Scholar 

  16. Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573

    Article  Google Scholar 

  17. Johakimu JK, Jerome A, Sithole BB, Prabashni L (2016) Fractionation of organic susbtances from the South African Eucalyptus grandis biomass by a combination of hot water and mild alkaline treatments. Wood Sci Technol 50:365–384

    Article  Google Scholar 

  18. Romaní A, Tomaz PD, Garrote G, Teixeira JA, Domingues L (2016) Combined alkali and hydrothermal pretreatments for oat straw valorization within a biorefinery concept. Biores Technol 220(1):323–332

    Article  Google Scholar 

  19. Akhtar N, Gupta K, Goyal D, Goyal A (2016) Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ Prog Sustainable Energy 35(2):489–511

    Article  Google Scholar 

  20. Romaní A, Garrote G, Alonso JL, Parajó JC (2011) Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification. Biores Technol 102(10):5896–5904

    Article  Google Scholar 

  21. Ruiz HA, Ruzene DS, Silva DP, Da Silva FFM, Vicente AA, Teixeira JA (2011) Development and characterization of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification. Appl Biochem Biotechnol 164:629–641

    Article  Google Scholar 

  22. Sipos B, Szilágyi M, Sebestyén Z, Perazzini R, Dienes D, Jakab E (2011) Mechanism of the positive effect of poly(ethylene glycol) addition in enzymatic hydrolysis of steam pretreated lignocelluloses. Comptes Rendus Biologies 334(11):812–823

    Article  Google Scholar 

  23. Guigou M, Cebreiros F, Cabrera MN, Ferrari MD, Lareo C (2016) Bioethanol production from Eucalyptus grandis hemicellulose recovered before kraft pulping using an integrated biorefinery concept. Biomass Conv Bioref. doi:10.1007/s13399-016-0218-6

    Google Scholar 

  24. Lavoie J, Capek-Menard E, Gauvin H, Chornet E (2010) Production of pulp from Salix viminalis energy crops using the FIRSST process. Biores Technol 101:4940–4946. doi:10.1016/j.biortech.2009.09.021

    Article  Google Scholar 

  25. Adney B, Baker J (2008) Measurement of cellulase activities. National Renewable Energy Laboratory. Available online: www.nrel.gov

  26. Camesasca L, Ramírez MB, Guigou M, Ferrari MD, Lareo C (2015) Evaluation of dilute acid and alkaline pretreatments, enzymatic hydrolysis and fermentation of napiergrass for fuel ethanol production. Biomass Bioenergy 74:193–201

    Article  Google Scholar 

  27. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of extractives in biomass. National Renewable Energy Laboratory. Available online, www.nrel.gov

  28. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass. National Renewable Energy Laboratory. 2005. Available online, www.nrel.gov

  29. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory. Available online, www.nrel.gov

  30. Garrote G, Domínguez H, Parajó JC (1999) Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. J Chem Technol Biotechnol 74:1101–1109

    Article  Google Scholar 

  31. Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agricultural residues and marine biomass according to the biorefinery concept: a review. Renew Sustainable Energy Rev 21:35–51

    Article  Google Scholar 

  32. Park J, Kang M, Kim JS, Lee J, Choi W, Lee J (2012) Enhancement of enzymatic digestibility of Eucalyptus grandis pretreated by NaOH catalyzed steam explosion. Biores Technol 123:707–712

    Article  Google Scholar 

  33. Van Dyk J, Pletschke B (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes: factors affecting enzymes, conversion and synergy. Biotechnol Adv 30(6):1458–1480

    Article  Google Scholar 

  34. Romaní A, Ruiz HA, Pereira FB, Teixeira JA, Domingues L (2014) Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel 135:482–491

    Article  Google Scholar 

  35. Romaní A, Garrote G, Alonso JL, Parajó JC (2010) Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Biores Technol 101:8706–8712

    Article  Google Scholar 

  36. Lee JM, Shi J, Venditti RA, Jameel H (2009) Autohydrolysis pretreatment of coastal Bermuda grass for increased enzyme hydrolysis. Biores Technol 100:6434–6441

    Article  Google Scholar 

  37. Ribas LA, Han Q, Jameel H, Chang H, Colodette JL, Borges FJ (2015) Production of fermentable sugars from sugarcane bagasse by enzymatic hydrolysis after autohydrolysis and mechanical refining. Biores Technol 180:97–105

    Article  Google Scholar 

  38. Gao Y, Xu J, Zhang Y, Yu Q, Yuan Z, Liu Y (2013) Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis. Biores Technol 144:396–400

    Article  Google Scholar 

  39. Ruiz HA, Ruzene DS, Silva DP, Quintas MAC, Vicente AA, Teixeira JA (2011) Evaluation of a hydrothermal process for pretreatment of wheat straw—effect of particle size and process conditions. J Chem Technol Biotechnol 86:88–94

    Article  Google Scholar 

  40. Ruiz HA, Vicente AA, Teixeira JA (2012) Kinetic modeling of enzymatic saccharification using wheat straw pretreated under autohydrolysis and organosolv process. Ind Crop Prod 36:100–107

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Agencia Nacional de Investigación e Innovación (INI_X_2013_1_101079), Uruguay. The authors would like to thank Novozymes for supplying the enzymes and UPM Fray Bentos, Uruguay, for supplying the eucalyptus chips.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Lareo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cebreiros, F., Ferrari, M.D. & Lareo, C. Combined autohydrolysis and alkali pretreatments for cellulose enzymatic hydrolysis of Eucalyptus grandis wood. Biomass Conv. Bioref. 8, 33–42 (2018). https://doi.org/10.1007/s13399-016-0236-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-016-0236-4

Keywords

Navigation