Skip to main content
Log in

Conversion of rubber wood waste to methane by ethanol organosolv pretreatment

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The restricted bioavailability of structurally complex carbohydrates for digestion has hitherto resulted in a low methane potential from rubber wood waste (RW). The effects of hydrothermal (HT) and ethanol organosolv (OS) pretreatments on the methane produced by anaerobic digestion of RW were investigated in the study reported. HT with temperatures above 190 °C significantly enhanced the anaerobic digestibility of RW mainly due to the degradation of hemicellulose. On the other hand, OS with 75% ethanol provided a potential methane gas yield of 165.1 L CH4/kg-VS, which was higher than that for HT at 210 and 230 °C by 39 and 7%, respectively. This was due to intensive delignification during OS pretreatment which led to a reduction in the non-productive adsorption of cellulolytic enzymes by lignin. A first-order kinetic model showed that OS had a higher hydrolysis rate (k = 0.073 ± 0.003 day−1) resulting in a higher methane yield when lower pretreatment temperatures were applied. The anaerobic degradation of the pretreated RW in this study was a result of simultaneous CH4 production through the symbiosis of anaerobic bacteria and methanogens using a combination of the aceticlastic and hydrogenothrophic bioconversion pathways. The recovery and use of the phenolic compounds remaining in the process water would be a way of adding value to this process and the feasibility of producing methane from RW should be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article (and/or) its supplementary materials.

References

  1. Li ZY, Wang YT, Guo ST, Li ZX, Xing YR, Liu GQ, Fang R, Hu Y, Zhu HT, Yan YL (2019) PM2.5 associated PAHs and inorganic elements from combustion of biomass, cable wrapping, domestic waste, and garbage for power generation. Aerosol Air Qual Res 19(11):2502–2517. https://doi.org/10.4209/aaqr.2019.10.0495

    Article  Google Scholar 

  2. Maschowski C, Kruspan P, Garra P, Talib Arif A, Trouvé G, Gieré R (2019) Physicochemical and mineralogical characterization of biomass ash from different power plants in the Upper Rhine Region. Fuel 258:116020. https://doi.org/10.1016/j.fuel.2019.116020

    Article  Google Scholar 

  3. Eom T, Chaiprapat S, Charnnok B (2019) Enhanced enzymatic hydrolysis and methane production from rubber wood waste using steam explosion. J Environ Manag 235:231–239. https://doi.org/10.1016/j.jenvman.2019.01.041

    Article  Google Scholar 

  4. Inkrod C, Raita M, Champreda V, Laosiripojana N (2018) Characteristics of lignin extracted from different lignocellulosic materials via organosolv fractionation. Bioenergy Res 11(2):277–290. https://doi.org/10.1007/s12155-018-9895-2

    Article  Google Scholar 

  5. Charnnok B, Sawangkeaw R, Chaiprapat S (2020) Integrated process for the production of fermentable sugar and methane from rubber wood. Bioresour Technol 302:122785. https://doi.org/10.1016/j.biortech.2020.122785

    Article  Google Scholar 

  6. Giummarella N, Pu Y, Ragauskas AJ, Lawoko M (2019) A critical review on the analysis of lignin carbohydrate bonds. Green Chem 21(7):1573–1595. https://doi.org/10.1039/C8GC03606C

    Article  Google Scholar 

  7. Charnnok B, Sakdaronnarong C, Sinbuathong N (2019) Hydrothermal pretreatment with sulfonated bentonite catalyst enhances potassium removal and bioconversion of oil palm empty fruit bunch to sugar and biohydrogen. Biomass Conversion Biorefinery 9(2):389–399. https://doi.org/10.1007/s13399-018-0360-4

    Article  Google Scholar 

  8. Cao Y, Chen SS, Zhang S, Ok YS, Matsagar BM, Wu KCW, Tsang DCW (2019) Advances in lignin valorization towards bio-based chemicals and fuels: lignin biorefinery. Bioresour Technol 291:121878. https://doi.org/10.1016/j.biortech.2019.121878

    Article  Google Scholar 

  9. Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47(3):852–908. https://doi.org/10.1039/C7CS00566K

    Article  Google Scholar 

  10. Khan MU, Ahring BK (2019) Lignin degradation under anaerobic digestion: influence of lignin modifications -a review. Biomass Bioenergy 128:105325. https://doi.org/10.1016/j.biombioe.2019.105325

    Article  Google Scholar 

  11. Mancini G, Papirio S, Lens PNL, Esposito G (2018) Anaerobic digestion of lignocellulosic materials using ethanol-organosolv pretreatment. Environ Eng Sci 35(9):953–960. https://doi.org/10.1089/ees.2018.0042

    Article  Google Scholar 

  12. Mancini G, Papirio S, Lens PNL, Esposito G (2018) Increased biogas production from wheat straw by chemical pretreatments. Renew Energy 119:608–614. https://doi.org/10.1016/j.renene.2017.12.045

    Article  Google Scholar 

  13. Schuerch C (1952) The solvent properties of liquids and their relation to the solubility, swelling, isolation and fractionation of lignin. J Am Chem Soc 74(20):5061–5067. https://doi.org/10.1021/ja01140a020

    Article  Google Scholar 

  14. Zhao X, Li S, Wu R, Liu D (2017) Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures. Biofuels Bioprod Biorefin 11(3):567–590. https://doi.org/10.1002/bbb.1768

    Article  Google Scholar 

  15. Mancini G, Papirio S, Lens PNL, Esposito G (2016) Solvent pretreatments of lignocellulosic materials to enhance biogas production: a review. Energy Fuel 30(3):1892–1903. https://doi.org/10.1021/acs.energyfuels.5b02711

    Article  Google Scholar 

  16. Mustafa AM, Li H, Radwan AA, Sheng K, Chen X (2018) Effect of hydrothermal and Ca(OH)2 pretreatments on anaerobic digestion of sugarcane bagasse for biogas production. Bioresour Technol 259:54–60. https://doi.org/10.1016/j.biortech.2018.03.028

    Article  Google Scholar 

  17. Adney B, Baker J (2008) Measurement of cellulase activities laboratory analytical procedure (LAP) (technical report NREL/TP-510-42628 January 2008). National Renewable Energy Laboratory (NREL)

  18. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  19. Raposo F, Banks CJ, Siegert I, Heaven S, Borja R (2006) Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem 41(6):1444–1450. https://doi.org/10.1016/j.procbio.2006.01.012

    Article  Google Scholar 

  20. Rafique R, Poulsen TG, Nizami A-S, Asam Z-u-Z, Murphy JD, Kiely G (2010) Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production. Energy 35(12):4556–4561. https://doi.org/10.1016/j.energy.2010.07.011

    Article  Google Scholar 

  21. Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44(3):550–552

    Article  Google Scholar 

  22. Tao X, Zhang P, Zhang G, Nabi M, Wang S, Ye J, Bao S, Zhang Q, Chen N (2019) Carbide slag pretreatment enhances volatile fatty acid production in anaerobic fermentation of four grass biomasses. Energy Convers Manag 199:112009. https://doi.org/10.1016/j.enconman.2019.112009

    Article  Google Scholar 

  23. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73(1):127–141. https://doi.org/10.1023/a:1000669317571

    Article  Google Scholar 

  24. Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D, Wolfe J (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory (NREL)

  25. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory (NREL)

  26. Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. https://doi.org/10.1177/004051755902901003

    Article  Google Scholar 

  27. Blainski A, Lopes GC, de Mello JC (2013) Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules 18(6):6852–6865. https://doi.org/10.3390/molecules18066852

    Article  Google Scholar 

  28. Ni Y, Hu Q (1995) Alcell® lignin solubility in ethanol–water mixtures. J Appl Polym Sci 57(12):1441–1446. https://doi.org/10.1002/app.1995.070571203

    Article  Google Scholar 

  29. Sun W, Othman MZ (2019) A selective fractionation method of lignocellulosic materials using electro-assisted organosolv pretreatment. Bioresour Technol 288:121421. https://doi.org/10.1016/j.biortech.2019.121421

    Article  Google Scholar 

  30. Kang X, Zhang Y, Li L, Sun Y, Kong X, Yuan Z (2020) Enhanced methane production from anaerobic digestion of hybrid Pennisetum by selectively removing lignin with sodium chlorite. Bioresour Technol 295:122289. https://doi.org/10.1016/j.biortech.2019.122289

    Article  Google Scholar 

  31. Chowdhury ZZ, Krishnan B, Sagadevan S, Rafique FR, Hamizi AN, Abdul Wahab Y, Khan AA, Johan BR, Al-douri Y, Kazi NS, Tawab Shah S (2018) Effect of temperature on the physical, electro-chemical and adsorption properties of carbon micro-spheres using hydrothermal carbonization process. Nanomaterials 8 (8). doi:https://doi.org/10.3390/nano8080597

  32. Trajano HL, Engle NL, Foston M, Ragauskas AJ, Tschaplinski TJ, Wyman CE (2013) The fate of lignin during hydrothermal pretreatment. Biotechnol Biofuels 6(1):110. https://doi.org/10.1186/1754-6834-6-110

    Article  Google Scholar 

  33. Hao X, Li Y, Wang J, Qin Y, Zhang J (2019) Adsorption and desorption of cellulases on/from lignin-rich residues from corn Stover. Ind Crop Prod 139:111559. https://doi.org/10.1016/j.indcrop.2019.111559

    Article  Google Scholar 

  34. Imman S, Laosiripojana N, Champreda V (2018) Effects of liquid hot water pretreatment on enzymatic hydrolysis and physicochemical changes of corncobs. Appl Biochem Biotechnol 184(2):432–443. https://doi.org/10.1007/s12010-017-2541-1

    Article  Google Scholar 

  35. Ghasimi DSM, Aboudi K, de Kreuk M, Zandvoort MH, van Lier JB (2016) Impact of lignocellulosic-waste intermediates on hydrolysis and methanogenesis under thermophilic and mesophilic conditions. Chem Eng J 295:181–191. https://doi.org/10.1016/j.cej.2016.03.045

    Article  Google Scholar 

  36. Buitrón G, Hernández-Juárez A, Hernández-Ramírez MD, Sánchez A (2019) Biochemical methane potential from lignocellulosic wastes hydrothermally pretreated. Ind Crop Prod 139:111555. https://doi.org/10.1016/j.indcrop.2019.111555

    Article  Google Scholar 

  37. Bittencourt GA, Barreto ES, Brandão RL, Baêta BEL, Gurgel LVA (2019) Fractionation of sugarcane bagasse using hydrothermal and advanced oxidative pretreatments for bioethanol and biogas production in lignocellulose biorefineries. Bioresour Technol 292:121963. https://doi.org/10.1016/j.biortech.2019.121963

    Article  Google Scholar 

  38. Choe U, Mustafa AM, Lin H, Choe U, Sheng K (2020) Anaerobic co-digestion of fish processing waste with a liquid fraction of hydrothermal carbonization of bamboo residue. Bioresour Technol 297:122542. https://doi.org/10.1016/j.biortech.2019.122542

    Article  Google Scholar 

  39. Czekała W, Lewicki A, Pochwatka P, Czekała A, Wojcieszak D, Jóźwiakowski K, Waliszewska H (2020) Digestate management in polish farms as an element of the nutrient cycle. J Clean Prod 242:118454. https://doi.org/10.1016/j.jclepro.2019.118454

    Article  Google Scholar 

  40. Shang GY, Zhang CG, Wang F, Qiu L, Guo XH, Xu FQ (2019) Liquid hot water pretreatment to enhance the anaerobic digestion of wheat straw-effects of temperature and retention time. Environ Sci Pollut Res 26(28):29424–29434. https://doi.org/10.1007/s11356-019-06111-z

    Article  Google Scholar 

  41. Suksong W, Kongjan P, Prasertsan P, Imai T, O-Thong S (2016) Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion. Bioresour Technol 214:166–174. https://doi.org/10.1016/j.biortech.2016.04.077

    Article  Google Scholar 

  42. Xu XW, Huo YY, Bai XD, Wang CS, Oren A, Li SY, Wu M (2011) Kordiimonas lacus sp. nov., isolated from a ballast water tank, and emended description of the genus Kordiimonas. Int J Syst Evol Microbiol 61(Pt 2):422–426. https://doi.org/10.1099/ijs.0.018200-0

    Article  Google Scholar 

  43. Hattori S (2008) Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ 23(2):118–127. https://doi.org/10.1264/jsme2.23.118

    Article  Google Scholar 

  44. Guan Y, Ngugi DK, Vinu M, Blom J, Alam I, Guillot S, Ferry JG, Stingl U (2019) Comparative genomics of the genus Methanohalophilus, including a newly isolated strain from Kebrit deep in the Red Sea. Front Microbiol 10:839. https://doi.org/10.3389/fmicb.2019.00839

    Article  Google Scholar 

  45. Tomita H, Okazaki F, Tamaru Y (2019) Biomethane production from sugar beet pulp under cocultivation with Clostridium cellulovorans and methanogens. AMB Express 9(1):28. https://doi.org/10.1186/s13568-019-0752-2

    Article  Google Scholar 

  46. Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50(Pt 4):1601–1609. https://doi.org/10.1099/00207713-50-4-1601

    Article  Google Scholar 

  47. Watanabe M, Kojima H, Fukui M (2013) Desulfotomaculum intricatum sp. nov., a sulfate reducer isolated from freshwater lake sediment. Int J Syst Evol Microbiol 63(Pt 10):3574–3578. https://doi.org/10.1099/ijs.0.051854-0

    Article  Google Scholar 

  48. L'Haridon S, Cilia V, Messner P, Raguenes G, Gambacorta A, Sleytr UB, Prieur D, Jeanthon C (1998) Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48(Pt 3):701–711. https://doi.org/10.1099/00207713-48-3-701

    Article  Google Scholar 

  49. Farghali M, Andriamanohiarisoamanana FJ, Ahmed MM, Kotb S, Yamashiro T, Iwasaki M, Umetsu K (2019) Impacts of iron oxide and titanium dioxide nanoparticles on biogas production: hydrogen sulfide mitigation, process stability, and prospective challenges. J Environ Manag 240:160–167. https://doi.org/10.1016/j.jenvman.2019.03.089

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Rubber Innovation Research Institute, Prince of Songkla University contract no. ENG590476S as well as by the Interdisciplinary Graduate School of Energy Systems and the Graduate School of Prince of Songkla University, Thailand. The authors would like to thank Panel Plus Co. Ltd. for rubber wood waste and Chalong Latex Industry Co., Ltd. Songkhla, Thailand, for the anaerobic inoculum. The authors would also like to recognize the support of the Energy Technology Research Center and Environmental Laboratory, Faculty of Environmental Management, Prince of Songkla University as well as the Department of Mathematics and Statistics, Faculty of Science, Prince of Songkla University for statistical analysis. We also acknowledge the Publication Clinic, Research and Development Office, PSU, for help in manuscript proofreading.

Funding

(1) National Rubber Innovation Research Institute, Prince of Songkla University contract no. ENG590476S, (2) The Interdisciplinary Graduate School of Energy Systems, and (3) The Graduate School of Prince of Songkla University, Thailand.

Author information

Authors and Affiliations

Authors

Contributions

Tanate Tongbuekeaw (Carried out the experiment, acquisition of data, analysis and interpretation of data and drafting of manuscript).

Ruengwit Sawangkeaw (Carried out the experiment and acquisition of data).

Sumate Chaiprapat (Contributed to the design and implementation of the research).

Boonya Charnnokd (Directed the project, study conception and design, analysis and interpretation of data, the drafting of the manuscript; contributed to the final version of the manuscript).

Corresponding author

Correspondence to Boonya Charnnok.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 319 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tongbuekeaw, T., Sawangkeaw, R., Chaiprapat, S. et al. Conversion of rubber wood waste to methane by ethanol organosolv pretreatment. Biomass Conv. Bioref. 11, 999–1011 (2021). https://doi.org/10.1007/s13399-020-00710-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00710-4

Keywords

Navigation