Skip to main content
Log in

Characteristics of Lignin Extracted from Different Lignocellulosic Materials via Organosolv Fractionation

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Among biomass-derived compounds, lignin is an underused component with potential for conversion to industrial-needed products in biorefinery. In this study, organosolv fractionation of four lignocellulosic materials including bagasse (BG), pararubber wood sawdust (PS), palm fiber (PF), and cassava fiber (CF) was studied using a ternary solvent mixture comprising methyl isobutyl ketone (MIBK), ethanol, and water in the presence of H2SO4 to separate high-purity lignin. The fractionation reaction was performed at 160 °C for 40 min with MIBK/ethanol/water proportion of 0.25/0.42/0.33 and 0.025 M of H2SO4, which led to the highest lignin removal efficiency of 88.2, 70.6, 67.3, and 71.7% (w/w) from BG, PS, PF, and CF, respectively. Physicochemical characteristics of the fractionated lignin were determined for Klason lignin and by X-ray fluorescence spectroscopy, organic elemental analysis, 1H nuclear magnetic resonance spectroscopy, and Fourier transform infrared spectroscopy. The lignin samples were thermally depolymerized in MIBK to determine the content of specific lignin-derived chemicals. The main phenolic derivatives from BG-lignin were 4-ethylphenol and 4-vinylguaiacol, whereas those from PS-lignin were syringaldehyde and cis-isoeugenol. Phenol and bis(2-ethylhexyl) phthalate were mainly produced from depolymerization of PF-lignin while trans-isoeugenol and hexadecanoic acid were the major products from CF-lignin. This work demonstrates the potential of the fractionated lignin for production of valuable chemicals in biorefineries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdullah HM, Latif MHA, Attiya HG (2013) Characterization and determination of lignin in different types of Iraqi phoenix date palm pruning woods. Int J Biol Macromol 61:340–346. https://doi.org/10.1016/j.ijbiomac.2013.06.020

    Article  CAS  PubMed  Google Scholar 

  2. Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crop Prod 28(3):237–259. https://doi.org/10.1016/j.indcrop.2008.03.008

    Article  CAS  Google Scholar 

  3. Brebu M, Tamminen T, Spiridon I (2013) Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS. J Anal Appl Pyrolysis 104:531–539. https://doi.org/10.1016/j.jaap.2013.05.016

    Article  CAS  Google Scholar 

  4. Gosselink R, Abächerli A, Semke H, Malherbe R, Käuper P, Nadif A, Van Dam J (2004) Analytical protocols for characterisation of sulphur-free lignin. Ind Crop Prod 19(3):271–281. https://doi.org/10.1016/j.indcrop.2003.10.008

    Article  CAS  Google Scholar 

  5. Monteil-Rivera F, Phuong M, Ye M, Halasz A, Hawari J (2013) Isolation and characterization of herbaceous lignins for applications in biomaterials. Ind Crop Prod 41:356–364. https://doi.org/10.1016/j.indcrop.2012.04.049

    Article  CAS  Google Scholar 

  6. Akpinar Ö, Usal G (2015) Investigation of the effect of temperature and alkaline concentration on the solubilization of phenolic acids from dilute acid-pretreated wheat straw. Food Bioprod Process 95:272–280. https://doi.org/10.1016/j.fbp.2014.11.001

    Article  CAS  Google Scholar 

  7. El Hage R, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A (2009) Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polym Degrad Stab 94(10):1632–1638. https://doi.org/10.1016/j.polymdegradstab.2009.07.007

    Article  Google Scholar 

  8. Fu D, Mazza G, Tamaki Y (2010) Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J Agric Food Chem 58(5):2915–2922. https://doi.org/10.1021/jf903616y

    Article  CAS  PubMed  Google Scholar 

  9. Xu F, Sun J-X, Sun R, Fowler P, Baird MS (2006) Comparative study of organosolv lignins from wheat straw. Ind Crop Prod 23(2):180–193. https://doi.org/10.1016/j.indcrop.2005.05.008

    Article  CAS  Google Scholar 

  10. Raita M, Denchokepraguy N, Champreda V, Laosiripojana N (2017) Effects of alkaline catalysts on acetone-based organosolv pretreatment of rice straw. 3 Biotech 7(5):1–10

    Article  Google Scholar 

  11. Murwanashyaka JN, Pakdel H, Roy C (2001) Seperation of syringol from birch wood-derived vacuum pyrolysis oil. Sep Purif Technol 24(1):155–165. https://doi.org/10.1016/S1383-5866(00)00225-2

    Article  CAS  Google Scholar 

  12. Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sust Energ Rev 21:506–523. https://doi.org/10.1016/j.rser.2012.12.022

    Article  CAS  Google Scholar 

  13. Erdocia X, Prado R, Corcuera MÁ, Labidi J (2014) Effect of different organosolv treatments on the structure and properties of olive tree pruning lignin. J Ind Eng Chem 20(3):1103–1108. https://doi.org/10.1016/j.jiec.2013.06.048

    Article  CAS  Google Scholar 

  14. Faris AH, Rahim AA, Mohamad Ibrahim MN, Hussin MH, Alkurdi AM, Salehabadi A (2017) Investigation of oil palm based Kraft and auto-catalyzed organosolv lignin susceptibility as a green wood adhesives. Int J Adhes Adhes 74 (Supplement C) 74:115–122. https://doi.org/10.1016/j.ijadhadh.2017.01.006

    Article  CAS  Google Scholar 

  15. Singh SK, Dhepe PL (2016) Isolation of lignin by organosolv process from different varieties of rice husk: understanding their physical and chemical properties. Bioresour Technol 221 (Supplement C) 221:310–317. https://doi.org/10.1016/j.biortech.2016.09.042

    Article  CAS  Google Scholar 

  16. Cordeiro N, Neto CP, Rocha J, Belgacem MN, Gandini A (2002) The organosolv fractionation of cork components. Holzforschung 56(2):135–142

    Article  CAS  Google Scholar 

  17. Pan X, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao Z, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90(4):473–481. https://doi.org/10.1002/bit.20453

    Article  CAS  PubMed  Google Scholar 

  18. Pan X, Xie D, Yu RW, Lam D, Saddler JN (2007) Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: fractionation and process optimization. Ind Eng Chem Res 46(8):2609–2617. https://doi.org/10.1021/ie061576l

    Article  CAS  Google Scholar 

  19. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Env 15(1):25–33. https://doi.org/10.1007/s10924-006-0042-3

    Article  Google Scholar 

  20. Brosse N, Sannigrahi P, Ragauskas A (2009) Pretreatment of Miscanthus x giganteus using the ethanol organosolv process for ethanol production. Ind Eng Chem Res 48(18):8328–8334. https://doi.org/10.1021/ie9006672

    Article  CAS  Google Scholar 

  21. Bozell JJ, Black SK, Myers M, Cahill D, Miller WP, Park S (2011) Solvent fractionation of renewable woody feedstocks: Organosolv generation of biorefinery process streams for the production of biobased chemicals. Biomass Bioenergy 35(10):4197–4208. https://doi.org/10.1016/j.biombioe.2011.07.006

    Article  CAS  Google Scholar 

  22. Klamrassamee T, Champreda V, Reunglek V, Laosiripojana N (2013) Comparison of homogeneous and heterogeneous acid promoters in single-step aqueous-organosolv fractionation of eucalyptus wood chips. Bioresour Technol 147:276–284. https://doi.org/10.1016/j.biortech.2013.08.015

    Article  CAS  PubMed  Google Scholar 

  23. Imman S, Arnthong J, Burapatana V, Champreda V, Laosiripojana N (2015) Fractionation of rice straw by a single-step solvothermal process: effects of solvents, acid promoters, and microwave treatment. Renewable Energ 83(Supplement C):663–673. https://doi.org/10.1016/j.renene.2015.04.062

    Article  CAS  Google Scholar 

  24. Wanmolee W, Daorattanachai P, Laosiripojana N (2016) Depolymerization of organosolv lignin to valuable chemicals over homogeneous and heterogeneous acid catalysts. Energ Procedia 100(Supplement C):173–177. https://doi.org/10.1016/j.egypro.2016.10.161

    Article  CAS  Google Scholar 

  25. Atlanta G (1988) Solvent extractives of wood and pulp. Tappi method T 204 om-88

  26. Ajuong E-M, Breese MC (1998) Fourier transform infrared characterization of Pai wood (Afzelia africana Smith) extractives. Holz Roh Werkst 56(2):139–142. https://doi.org/10.1007/s001070050285

    Article  CAS  Google Scholar 

  27. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure 1617

  28. Amiri H, Karimi K, Roodpeyma S (2010) Production of furans from rice straw by single-phase and biphasic systems. Carbohydr Res 345(15):2133–2138. https://doi.org/10.1016/j.carres.2010.07.032

    Article  CAS  PubMed  Google Scholar 

  29. Rencoret J, Gutiérrez A, Nieto L, Jiménez-Barbero J, Faulds CB, Kim H, Ralph J, Martínez ÁT, del Río JC (2011) Lignin composition and structure in young versus adult Eucalyptus globulus plants. Plant Physiol 155(2):667–682. https://doi.org/10.1104/pp.110.167254

    Article  CAS  PubMed  Google Scholar 

  30. Wildschut J, Smit AT, Reith JH, Huijgen WJJ (2013) Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresour Technol 135:58–66. https://doi.org/10.1016/j.biortech.2012.10.050

    Article  CAS  PubMed  Google Scholar 

  31. Huijgen WJJ, Reith JH, den Uil H (2010) Pretreatment and fractionation of wheat straw by an acetone-based organosolv process. Ind Eng Chem Res 49(20):10132–10140. https://doi.org/10.1021/ie101247w

    Article  CAS  Google Scholar 

  32. Cybulska I, Brudecki G, Rosentrater K, Julson JL, Lei H (2012) Comparative study of organosolv lignin extracted from prairie cordgrass, switchgrass and corn stover. Bioresour Technol 118:30–36. https://doi.org/10.1016/j.biortech.2012.05.073

    Article  CAS  PubMed  Google Scholar 

  33. Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94(5):851–861. https://doi.org/10.1002/bit.20905

    Article  CAS  PubMed  Google Scholar 

  34. Sreekala MS, Thomas S (2003) Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Compos Sci Technol 63(6):861–869. https://doi.org/10.1016/S0266-3538(02)00270-1

    Article  CAS  Google Scholar 

  35. Panichnumsin P, Nopharatana A, Ahring B, Chaiprasert P (2010) Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Biomass Bioenergy 34(8):1117–1124. https://doi.org/10.1016/j.biombioe.2010.02.018

    Article  CAS  Google Scholar 

  36. Mansouri N-EE, Salvadó J (2006) Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind Crop Prod 24(1):8–16. https://doi.org/10.1016/j.indcrop.2005.10.002

    Article  Google Scholar 

  37. Robert DR, Bardet M, Gellerstedt G, Lindfors EL (1984) Structural changes in lignin during kraft cooking part 3. On the structure of dissolved lignins. J Wood Chem Technol 4(3):239–263. https://doi.org/10.1080/02773818408070647

    Article  CAS  Google Scholar 

  38. Jose C, Gutiérrez A, Rodriguez IM, Ibarra D, Martinez AT (2007) Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR. J Anal Appl Pyrolysis 79(1):39–46

    Google Scholar 

  39. Bhat R, Khalil HPSA, Karim AA (2009) Exploring the antioxidant potential of lignin isolated from black liquor of oil palm waste. Comptes Rendus Biologies 332(9):827–831. https://doi.org/10.1016/j.crvi.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  40. Zhang J, Deng H, Lin L, Sun Y, Pan C, Liu S (2010) Isolation and characterization of wheat straw lignin with a formic acid process. Bioresour Technol 101(7):2311–2316. https://doi.org/10.1016/j.biortech.2009.11.037

    Article  CAS  PubMed  Google Scholar 

  41. Greenwood PF, van Heemst JD, Guthrie EA, Hatcher PG (2002) Laser micropyrolysis GC–MS of lignin. J Anal Appl Pyrolysis 62(2):365–373. https://doi.org/10.1016/S0165-2370(01)00135-8

    Article  CAS  Google Scholar 

  42. Martín C, Wei M, Xiong S, Jönsson LJ (2017) Enhancing saccharification of cassava stems by starch hydrolysis prior to pretreatment. Ind Crop Prod 97:21–31. https://doi.org/10.1016/j.indcrop.2016.11.067

    Article  Google Scholar 

  43. Soldera S, Sebastianutto N, Bortolomeazzi R (2008) Composition of phenolic compounds and antioxidant activity of commercial aqueous smoke flavorings. J Agric Food Chem 56(8):2727–2734. https://doi.org/10.1021/jf072117d

    Article  CAS  PubMed  Google Scholar 

  44. Holladay J, Bozell J, White J, Johnson D (2007) Top value-added chemicals from biomass. DOE Report PNNL 16983

  45. Kim Y, Yu A, Han M, Choi GW, Chung B (2011) Enhanced enzymatic saccharification of barley straw pretreated by ethanosolv technology. Appl Biochem Biotechnol 163(1):143–152. https://doi.org/10.1007/s12010-010-9023-z

    Article  CAS  PubMed  Google Scholar 

  46. Coral Medina JD, Woiciechowski A, Zandona Filho A, Noseda MD, Kaur BS, Soccol CR (2015) Lignin preparation from oil palm empty fruit bunches by sequential acid/alkaline treatment—a biorefinery approach. Bioresour Technol 194(Supplement C):172–178. https://doi.org/10.1016/j.biortech.2015.07.018

    Article  CAS  Google Scholar 

  47. Cybulska I, Brudecki G, Rosentrater K, Lei H, Julson J (2012) Catalyzed modified clean fractionation of prairie cordgrass integrated with hydrothermal post-treatment. Biomass Bioenergy 46(Supplement C):389–401

    Article  CAS  Google Scholar 

Download references

Funding

Raita M. was supported by the Thailand Research Fund (TRG5980019). Laosiripojana N. was supported by the Thailand Research Fund (RTA5980006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Raita.

Electronic supplementary material

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inkrod, C., Raita, M., Champreda, V. et al. Characteristics of Lignin Extracted from Different Lignocellulosic Materials via Organosolv Fractionation. Bioenerg. Res. 11, 277–290 (2018). https://doi.org/10.1007/s12155-018-9895-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-018-9895-2

Keywords

Navigation